
All aboard: The aggregate effects of port development

César Ducruet1, Réka Juhász2, Dávid Krisztián Nagy3, and Claudia
Steinwender4

1CNRS
2Columbia University

3CREI, Universitat Pompeu Fabra and Barcelona GSE
4MIT Sloan ∗

July 3, 2019

Abstract

This paper studies the distributional and aggregate economic effects of new port
technologies developed in the second half of the 20th century. We show that new
technologies have led to a significant reallocation of shipping activity from large to small
cities. This was driven by a land price mechanism; as new port technologies are more
land-intensive, ports moved from large, high land price cities to smaller, lower land price
ones. We add endogenous port development to a standard quantitative model of cross-
city trade to account for both the benefits and the costs of port development. According
to the model, the adoption of new port technologies leads to benefits through increasing
market access but is costly, requiring the extensive use of land, suggesting a reallocation
of shipping activities towards cities with low land prices and thus net gains from new
port technologies that are heterogeneous across cities. Counterfactual results suggest
that new port technologies led to sizable aggregate gains for the world economy, with
substantial heterogeneity in the effects across countries. More generally, accounting for
the costs of port infrastructure development endogenously has the potential to alter
the size and distribution of the gains from trade.
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Introduction

Cities across the income distribution spend heavily on port development.1 There is widespread
belief that the gains to developing port infrastructure are high.2 However, port services, and
in particular transshipment services, are a low value added economic activity, suggesting
that port development must exert its positive influence through linkages to other parts of
the economy (OECD, 2014). Spatial theory provides at least one such linkage; the well-known
market access effect. By reducing transport costs, port development makes a location at-
tractive for firms and consumers alike. Indeed, a recent literature has emerged showing that
trade induced city development is important for both aggregate development and structural
transformation (Bleakley and Lin, 2012; Armenter et al., 2014; Coşar and Fajgelbaum, 2016;
Nagy, 2017; Fajgelbaum and Redding, 2018).

However, alongside the benefits, port activities can also entail significant costs for a city.
Modern ports have become increasingly land-intensive to the point where large ports today
occupy an enormous share of a city’s available land supply. According to some estimates,
the ports of Antwerpen and Rotterdam occupy more than 30% of the metropolitan area,
a staggering number (OECD, 2014). Through their land usage, modern ports may impose
significant costs on a city. In recent years, concerns have been raised that port development
may constrain city development through this mechanism.3 As land prices increase system-
atically with city size (Combes et al., 2018), the opportunity cost of port development may
vary across cities.

In this paper, we examine the aggregate and distributional effects of port development
induced by the arrival of new port technologies in the 1960s, allowing for both the benefits
and the costs that these new technologies may entail. By reducing trade costs, new port tech-
nologies, particularly containerization, have been found to account for a sizable proportion
of the increase in trade flows during the second wave of globalization (Bernhofen et al., 2016;

1Two prominent recent examples from very different parts of the income distribution are Colombo and
Hong Kong. Colombo’s port development is described in Herrera Dappe and Suárez-Alemán (2016), while
recent media reports describing plans to build housing units above the container port illustrate the lengths
city officials are willing to go to maintain Hong-Kong’s status as a premier port amidst a drastic housing
shortage (South China Morning Post, retrieved July 1, 2019).

2For example, developers of Colombo’s port hope to transform the city into “ (...) something more than
just a place to transship containers. It is to be a major financial center, rivaling Singapore to the east and
Dubai to the west (...).” (Forbes Magazine, 2016, retrieved July 1, 2019). A recent report by the OECD
summarizes more generally the purported link between port development and urban growth (OECD, 2014).

3For example, according to the OECD, “Agglomeration effects and high job density are generally con-
sidered to be factors of urban economic growth and these agglomeration effects may be constrained by the
presence of large port areas.” (OECD, 2014, p.51)
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Coşar et al., 2018; Levinson, 2010). However, differently to other transportation technology
improvements such as the railroads, little is known about their aggregate and distributional
effect on economic activity.4

Studying the effects of new port technologies is particularly interesting, as differently
to other transport infrastructure such as roads or railways, modern ports place a significant
strain on locally scare land supply in cities. This raises the possibility of large, heterogeneous
costs of developing port infrastructure, suggesting that not all cities are equally well-suited
to hosting modern ports and that new port technologies may significantly alter the spatial
distribution of economic activity. Indeed, new port technologies have been argued to have
substantially changed the economic geography of cities. For example, in an influential book,
Levinson (2010) argues that “Cities that had been centers of maritime commerce for cen-
turies, such as New York and Liverpool, saw their waterfronts decline with startling speed
[...] Sleepy harbors such as Busan and Seattle moved into the front ranks of the world’s
ports.”

We use a novel and unique dataset on bilateral shipping flows across ports worldwide for
the period 1950-1990 to provide what is to the best of our knowledge the first quantitative,
causal estimates of the reallocation of ports across cities as a consequence of these new
technologies. We provide evidence for the mechanism that we argue drives these changes
and build a quantitative spatial model to estimate their effect on economic activity.

In the first part of the paper, we estimate the extent to which the reallocation of port
activity from big to small cities, as argued by Levinson (2010), is indeed a systematic feature
of the data and whether it is caused by the arrival of new port technologies. We confirm
both. We find that starting in the 1960s, ports reallocated from the largest cities to smaller
ones. We show that this effect was driven by initially smaller cities increasing their ship-
ping activities disproportionately relative to large ones. Next, we show that part of this
reallocation was causal. We isolate exogenous variation in the suitability of cities to new
port technologies by developing an area-based measure of natural depth, building on Brooks
et al. (2018). Using this source of variation, we show that cities exogenously better suited
to new port technologies increased their shipping volumes disproportionately after 1970, but
not before. In line with the overall reallocation of ports from big to small cities, we find
that our measure of exogenous port suitability predicts disproportionately larger increases
in shipping flows for cities that were initially smaller. This novel stylized fact motivates the

4For example, Donaldson (2018); Donaldson and Hornbeck (2016) study the economic effect of the rail-
roads in a quantitative trade model.
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remainder of the paper.
We next turn to identifying the mechanisms that account for this reallocation. Our

analysis is informed by two aspects of the new technology. First, we document that new
technologies dramatically reduced transshipment costs at the port. This is in contrast to
other transportation technology improvements such as the steamship or the railway that
predominantly reduced distance based transport costs. Second, we document that these
technologies led to ports becoming far more land-intensive. This was partly because con-
tainerized shipping requires more space during loading, unloading and transshipment, and
partly because modern ports operate at a larger scale. Informed by these aspects of the em-
pirical setting, we hypothesize that the reallocation of shipping was driven by a land-price
mechanism. As new port technologies meant more land was required for port development,
hosting ports in large, high land price cities became more expensive, making the reallocation
of ports to smaller cities more attractive. We show three pieces of empirical evidence in
support of this mechanism.

First, we document that cities exogenously better suited to becoming a modern port
increased their shipping disproportionately after the 1970s, but more so in places where
land supply was elastic. That is, cities equally well-suited to hosting modern ports in terms
of their depth measure increased their shipping flows to a larger extent if there was more
land available for the city to expand. Second, we show that larger (more populous) cities
dedicated a smaller share of land to the port after the arrival of new port technologies. This
is despite the fact that larger cities had systematically higher shipping flows, as predicted
by gravity models. Moreover, this specialization away from port based activities was not
present in big cities prior to the arrival of new port technologies. Before their arrival, larger
cities allocated a larger share of their land to the port than smaller ones. Third, we estimate
the casual effect of shipping on population in port cities and in nearby inland cities. We
find that the net effect of shipping on population is positive in port cities, however it is
somewhat smaller than the effect on cities that are located inland, but are close to a port.
This suggests that nearby inland cities enjoy similar benefits of the port as the port cities,
but do not face the same costs.

To rationalize these facts and develop a tool for quantitative general equilibrium analysis,
the second part of the paper builds a model of trading cities. In the model, land owners
in port cities can use part of their land to provide transshipment services to firms shipping
through the port. Land owners can lower the cost of transshipment by developing the port,
that is, by increasing the share of land dedicated to transshipment. New port technologies,
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by being more land-intensive, make this relationship between land use and transshipment
costs more pronounced than before. Endogenous transshipment costs enter overall shipping
costs in a way that the model preserves the gravity equation of trade flows. The model
provides a rich set of predictions on the extent to which cities develop their port. On the
one hand, cities develop their port more if they face a large amount of shipping through
the port, implying larger benefits from port development. On the other hand, cities develop
their port less if they face high land rents, implying higher costs of port development.

The model also provides testable predictions on two opposing effects of port development
on city population. On the one hand, port development benefits the city as it lowers shipping
costs, hence increases the city’s access to trade, an effect that we call the market access effect.
Everything else fixed, the market access effect draws people into the city. On the other hand,
port development is costly as it requires land. Developing the port involves reallocating land
from other purposes, thus making the city a worse place to live, an effect that we call the
crowding-out effect. Everything else fixed, the crowding-out effect pushes people out of the
city. Whether a city ultimately gains in population is the outcome of the trade-off between
these two forces. Differences across cities in geographic location and land rents imply that the
trade-off between the two forces plays out differently for different cities, making them benefit
differentially from the arrival of new port technologies and thus triggering a reallocation of
economic activity across cities.

Informed by the model’s predictions on city population driven by the costs and benefits of
port development, we re-estimate the causal effect of increased shipping flows on population,
controlling for market access as guided by the model. Our causal estimates point to a
negative effect of shipping on city population once market access is controlled for. In line
with the predictions of the model, once the indirect (linkage) effect of increased shipping is
accounted for through the market access channel, the direct effect of shipping on population
is negative, consistent with a crowding-out effect of port activities.

In the final part of the paper, we take the model to the data in order to quantify the
aggregate and distributional effects of new port technologies. We use data on shipping flows,
city GDP and population in 1990 to back out the city-specific fundamentals that rationalize
the data and allow us to conduct counterfactuals. To illustrate the quantitative effects of
new port technologies, we conduct a counterfactual in which we change the parameters of
the endogenous transshipment cost function in a way that mimics transshipment technology
in the 1950s. Importantly, we show that moving from the old to new port technologies leads
to a reallocation of shipping from large to small cities consistent with our motivating stylized
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fact. In this counterfactual, shipping flows increase by 92.6%, while aggregate welfare and
real GDP increase by 5.3% and 5.7%, respectively. Moreover, the gains in welfare vary
substantially across countries, ranging from zero to as much as 50%.

While we think of these numbers as illustrative of the mechanisms in the model as op-
posed to being precise estimates of the effect of new port technologies, we believe there
are important conclusions to be drawn from this preliminary evidence. Compared to other
estimates of the gains from increased trade, the aggregate and distributional effects in our
setting seem to be relatively sizable. In our view, this underscores the importance of thinking
carefully about the costs of infrastructure development. In particular, one interpretation of
the sizable aggregate gains found in this paper is that new port technologies led to large
reallocation of economic activity in a way that compounds welfare effects through popu-
lation movements. As ports reallocated from large, high-rent, high-productivity cities to
smaller, lower rent, lower productivity cities, they were able to reap the gains from increased
specialization. Larger cities became more specialized in their comparative advantage sector,
non-port activities. More generally, this suggests that accounting for the costs of infrastruc-
ture in an endogenous way has the potential to deepen our understanding of the gains from
trade and how they are distributed.

The paper is organized as follows. Section 1 describes new port technologies. In Section
2, we introduce the most important data sources used in the paper. Section 3 presents the
reduced form effects of new port technologies. Section 4 discusses the model. Section 5
revisits the empirical evidence in light of the model predictions. Section 6 describes how
we take the model to the data, while Section 7 assesses the model fit. Finally, Section 8
discusses the preliminary counterfactual results.

Related literature
A recent, growing literature has shown evidence that access to trade leads to local ben-

efits inducing city development (Bleakley and Lin, 2012; Armenter et al., 2014; Coşar and
Fajgelbaum, 2016; Nagy, 2017; Fajgelbaum and Redding, 2018). We contribute to this liter-
ature by showing that trade induced development can also have substantial, heterogeneous
local costs. The crowding out mechanism that drives the cost side in our setting relates
the paper to the “Dutch-disease” literature which shows that booming industries lead to
significant costs by increasing local factor prices and crowding out other (tradeables) sectors
(Corden and Neary, 1982; Krugman, 1987; Allcott and Keniston, 2017). Relative to this
literature, our setting contains the potential for gains as well as costs, through the input-
output linkages to other sectors in the form of market access. One contribution of this paper
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is to generalize the predictions from these two, seemingly disparate literatures which have
focused on either the cost or benefit side of booming industries. When estimating the effect
of a booming sector that competes for locally scarce resources, it is important to account for
potential benefits through input-output linkages between the booming sectors and the rest
of the economy. At the same time, it is also important to account for the costs in terms of
potential crowding out through competition for locally scarce resources.

Our paper is also related to the quantitative international trade literature, which has
developed tractable models of trade across multiple countries with various dimensions of
heterogeneity (Anderson, 1979; Eaton and Kortum, 2002; Melitz, 2003). These models char-
acterize trade and the distribution of economic activity across countries as a function of
exogenous trade costs. A standard prediction of these models is that the relationship be-
tween trade flows and costs follows a gravity equation, which has been documented as one
of the strongest empirical regularities in the data (Head and Mayer, 2014). We complement
this literature by developing a framework in which trade costs are endogenous, in a way
that is both tractable and preserves the gravity structure of trade flows. This relates our
paper to Fajgelbaum and Schaal (2017) and Santamaría (2018), who consider endogenous
road construction in multi-location models of economic geography. Unlike them, we focus
on endogenous port development as opposed to road infrastructure, and solve for the decen-
tralized equilibrium as opposed to the optimal allocation to improve our understanding of
the large-scale changes in shipping and economic activity observed in the data.

Finally, our paper is related to a large literature studying the effects of transport in-
frastructure improvements.5 There is a growing literature studying the effects of new port
technologies, in particular the effects of containerization (Hummels, 2007; Bernhofen et al.,
2016; Coşar et al., 2018; Holmes and Singer, 2018; Brooks et al., 2018; Gomtsyan, 2016,
Altomonte et al. 2018).6 Most closely related is Brooks et al. (2018) who study the effect
of containerization on local economic outcomes across US counties. Our main contribution
to this literature is twofold. First, motivated by our novel stylized fact documenting the
reallocation of ports from big to small cities, this paper focuses on understanding how the
land-mechanism drives heterogeneous costs of port development across cities. Second, to the
best of our knowledge, this is the first paper seeking to quantify the aggregate effects of new
port technologies through the lens of a quantitative economic geography model.

5Redding and Turner (2015) provides an overview of recent developments in this literature.
6More broadly, the paper also relates to Brancaccio et al. (2017) who endogenize trade costs in the

shipping sector in order to study its effect on trade. Relative to that paper, the focus in this paper is on
understanding how the location of modern ports affects the spatial distribution of economic activity.
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1 New port technologies

The middle of the 20th century witnessed a number of revolutionary changes to shipping,
and in particular, port technology. The best-known and perhaps most important of these
was the development and adoption of containerized shipping worldwide, that is the handling
of cargo in standardized boxes (called containers). The nature of handling large containers
heralded a host of other innovations in port technologies. These included automation, in
particular the introduction of large cranes for loading and unloading cargo, ship sizes that
are 17 times larger than in the 1950s (Brooks et al., 2018) and computerization, which for
example facilitates the optimal unloading of cargo taking into account the weight distribution
in the ship (Levinson, 2010). The use of these technologies is not limited to containerized
cargo handling, but instead a general feature of modern ports. Henceforth, we refer to this
bundle of new innovations as new port technologies. We believe this distinction is important,
as while containerization is likely to be the major driver of cost reductions and changes in
port technologies, our focus will not be limited to understanding containerization per se, but
rather in estimating the effects of all new port technologies. This is key, as both our data
and our reduced form empirical strategy are designed and suited to capturing the effect of
new port technologies that are not limited to containerization.

The idea behind containerization was remarkably simple: instead of handling discrete
cargo items individually, why not put cargo into boxes and handle those? Containerized
shipping of cargo was initially introduced on domestic routes between US ports, but the
technology was rapidly adopted and importantly, standardized worldwide in the 1960s (Rua,
2014). By the mid-2000s, containerized shipping was estimated to account for 70% of the
volume of general cargo (excluding oil, fertilizers, ore and grain) (Rua, 2014). Similarly to
other transportation technology improvements, containerization and modern port technolo-
gies more generally reduced transportation costs and increased trade flows (Hummels, 2007;
Bernhofen et al., 2016; Coşar et al., 2018). There are two aspects of the nature of these new
technologies that are particularly important to the question examined in this paper. In the
following, we discuss these in more detail.

1.1 Modern ports take up a lot of land

First, new port technologies require far more land than traditional ones in order to accom-
modate the cranes that move the containers and for the marshalling of containers and trucks
(Rua, 2014). Modern ports also need a larger scale to operate efficiently given their increased
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capital and land-intensity (Levinson, 2010; OECD, 2014). Taken together, this implies that
modern ports have the potential to occupy large areas of the city. Indeed, the OECD esti-
mates that the port of Antwerpen and Rotterdam occupy more than 30% of the metropolitan
area of the city, a staggering share. Even in larger, extremely high land-price cities such as
Hong-Kong, the port covers an estimated 5% of the city (OECD, 2014).

While we are aware of no readily available measures of port size across time for our
worldwide sample of cities, given the central role played by the local land market in this
paper, it is important to understand whether port sizes have indeed increased over time. To
this end, we collected wharf length data for ports around the world for one year each decade
between 1950-1990.7 Figure 1 shows the distribution of port length throughout the decades.
There is very little change in the distribution between 1950 and 1960, and a distinct and
steady rightward shift of the distribution in the following decades, consistent with the timing
of the development of new technologies in shipping. While this is a highly imperfect measure
of port area, it does confirm for our worldwide sample that port area seems to have become
systematically larger after the introduction of new port technologies.8

1.2 Modern port technologies reduced transshipment costs

Second, containerization reduced costs most dramatically in transshipment. As Krugman
(2011) writes, “The ability to ship things long distances fairly cheaply has been there since
the steamship and the railroad. What was the big bottleneck was getting things on and
off the ships. A large part of the costs of international trade was taking the cargo off
the ship, sorting it out, and dealing with the pilferage that always took place along the
way. So, the first big thing that changed was the introduction of the container.” Today,
large container ports that house acres upon acres of orderly stacked standardized boxes are
such an ubiquitous feature of cities that it is hard to imagine that only a few decades ago,
ports used very different technologies. Breakbulk shipping, the technology containerization
displaced, was a complicated and costly method of transshipping freight at the port. Each
item of cargo was handled individually making the loading and unloading of ships expensive
both in terms of freight costs and in terms of time a ship spent in port. According to
Bernhofen et al. (2016), prior to containerization, often two-thirds of a ships’ time would
be spent in port. Industry experts estimated that using breakbulk shipping technology,

7The port length data is discussed in more detail in Section 2.
8The most important drawback of our data is that it fails to capture the increased land usage of a port

due to space dedicated to cranes and the storage of containers. However, this implies that we are probably
vastly underestimating the increase in port size over this time period.
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the handling of cargo at the port accounted for the lion’s share of freight costs (Levinson,
2010); transshipment costs were estimated to account for 49% of the total transport cost
on shipment from the US to Europe (Eyre, 1964). Moreover, containerization also made
intermodal transport vastly more efficient as the same standardized boxes were adopted for
rail freight and trucking, further facilitating the transshipment of cargo. Given the central
importance attributed to transshipment cost reductions by the literature, we model new port
technologies as a reduction in transshipment costs in the model.

2 Data

Our analysis builds on a number of novel data sources.9 Crucial to our analysis is a dataset
of worldwide bilateral ship movements for the years 1950-1990 at the port level.10 These
data were extracted for one week samples for each decade from the Lloyd’s List. Differently
to other port level data sources, as these ship movements capture both containerized and
non-containerized shipping flows, we are able to compare the economic geography of shipping
and its effect on cities both before and after the arrival of new port technologies. We know
of no other data source that has a similar coverage of shipping flows across time and space,
especially at such a detailed port-level disaggregation. An important limitation, however, is
that we cannot observe either the value or the volume of shipment but only bilateral ship
movements. From these ship movements, we sum the total number of ships passing through
each port, which we call shipping flows.

As we are interested in the economic effects of new port technologies on cities, we match
the shipping data to city population. We use data on city population for locations with
greater than 100,000 inhabitants from “Villes Géopolis” for the years 1950-1990 (Geopo-
lis city, henceforth) (Moriconi-Ebrard, 1994).11 Ports from the shipping data were hand-
matched to cities based on whether they were located within the urban agglomeration of
a city in the Geopolis dataset, allowing for multiple ports to be assigned to one city. We
define port cities in a time invariant manner; a port city with positive shipping flows in

9In this section, we only discuss the most important data sources. All remaining data are discussed in
the Online Appendix.

10The data are discussed in more detail in Ducruet et al. (2018).
11The advantage of these data relative to sources such as the UN World Cities dataset is that a consistent

and systematic effort was made to obtain populations for the urban agglomeration of cities (that is, the
number of inhabitants living in a city’s contiguous built up area) as opposed to the administrative boundaries
that are often reported in country-specific sources. As is common with censored city population data, we
observe population for cities that reached 100,000 inhabitants in any year throughout this period. For most
of these cities, we observe population even when the city had strictly fewer than 100,000 inhabitants.
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only one period will be classified as a port city for all years. Table 1 contains summary
statistics on our matched shipping-city sample. Of the 2,636 cities in the Geopolis dataset,
553 have at least one port assigned, we label them port cities. Besides the port cities, we
have information for 1,592 ports that are not assigned to a city in the Geopolis dataset. Our
empirical analysis focuses predominantly on estimating the effects of new port technologies
on the 553 port cities, though we also show some effects on nearby Geopolis cities. As we are
interested in estimating the general equilibrium effects of port technologies, our quantitative
estimation covers the full set of 2,636 Geopolis cities (port and non-port cities). Figure 2
plots the port and non-port cities.

Figure 3 visualizes the shipping network at the beginning and the end of our sample
period.12 The nodes in this network are the port cities and their size is proportionate to the
population of the city in each period. The width of the edges are proportionate to the size of
shipping between two nodes. A cursory look at the data anticipates the results we will show
formally in the next section; between 1950 and 1990, shipping activity reallocated form the
largest cities in the world in terms of population to much smaller ones.

Finally, the size of the port and the amount of land it occupies as a share of the city is
central to our analysis. We are aware of no readily available measures for these across time
and covering our sample of port cities. In their absence, we have constructed an imperfect
approximation using the best available information. We have collected data on the length
of wharves (“port length”) for port cities from the annual publication “Ports of the World”.
This is available for 83% of the ports in our sample for at least some years. For a small
subset of ports (14), we also observe the total area of land occupied by the port in 1990 from
the same publication. We use the scaling factor between port length and total port area on
this subsample to transform port length into port area on the remaining sample.

We measure the area of the city using nightlight satellite data to identify the boundary
of the city in 1990.13 The share of the city occupied by the port is the estimated port area
divided by the total estimated area of the city. While this is an admittedly highly imperfect
measure with multiple sources of measurement error, we find that it shows patterns that are
consistent with the pattern found in the subset of ports for which we do observe the total

12This follows Ducruet et al. (2018).
13Nightlight data suffer from the well-known “bleeding” problem; high levels of luminosity spill over into

neighboring cells biasing the estimated area of a city systematically upward (Donaldson and Storeygard,
2016). To circumvent this problem, we use data on the area of the city available for a subset of our city
sample from Geopolis to extrapolate the area of the city in a specification that includes the area of the city
as measured by the nightlight data and country fixed effects. To probe robustness, we also estimated the
area of the city based on daylight satellite data following Vogel et al. (2019), with similar results.

11



port area.

3 The reduced form effects of new port technologies

In this section, we estimate how the arrival of new port technologies in the 1960s affected the
location of economic activity. We start by documenting a novel stylized fact; beginning in
the 1960s, ports reallocated from the largest cities to smaller ones. We show that this effect
was driven by initially smaller cities increasing their shipping activities disproportionately
relative to large ones. We hypothesize that this reallocation is driven in large part by the
fact that as new port technologies require more land, it became too expensive to host ports
in the largest, highest land price cities. We provide several pieces of evidence in support of
this claim.

3.1 Reallocation of ports from big to smaller cities

The qualitative literature suggests that one effect of new port technologies was the realloca-
tion of ports from large to smaller cities (Levinson, 2010). Using our data, we are able to
examine this relationship across our worldwide set of port cities. We begin by estimating
the correlation between population and shipping separately by decade in Table 2 in a spec-
ification that includes year (columns 1 and 3) or country-by-year fixed effects (columns 2
and 4). There is a strong, positive correlation between shipping and population throughout
our sample period. This is unsurprising as larger centers of economic activity tend to have
higher demand for shipping. More interestingly, this correlation begins weakening in 1970,
at exactly the same time as new port technologies are introduced according to the literature.
The decline in correlation is statistically significant between 1960 and 1990 and the magni-
tude is large; the size of the coefficient decreases by 20% over this time period. Moreover,
it does not seem to be driven by regional trends such as the rise of Asia in the late 20th
century, as the pattern becomes stronger when only within country variation is used.

These results suggest that port services reallocated form the largest to smaller cities
at the same time as new port technologies were adopted worldwide. One issue with this
interpretation is that our baseline sample only includes shipping that takes place in ports
located within the city (port cities). It is possible that the weakening correlation could
be driven not by shipping reallocating to smaller cities that we observe in our sample,
but by large cities moving their port to a small location that is close to, but not within
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the city, and outside of our sample of cities.14 To address this, Table 11 re-estimates the
specification adding shipping flows that serve a city from outside. In particular, columns
(3)-(4) add additional shipping flows from standalone ports (not assigned to a city in our
baseline sample) which serve the city from outside. The weakening correlation is apparent in
these specifications and similar in magnitude. Based on this, we conclude that the weakening
correlation is indeed driven by port services reallocating from the largest to smaller cities,
rather than by the reallocation of shipping activities to a small location just outside the city.

How did this reallocation take place? Figure 4 splits the sample into size quartiles based
on initial population in 1950 and estimates the growth in shipping over time. In the decades
after 1960, there is a diverging trend in growth by size quartiles. The initially smallest
three quartiles of cities increase their shipping flows the most, while there is only relatively
modest growth in shipping flows of the initially largest quartile of cities. While convergence
in shipping flows across ports is a possible explanation, trends only start to diverge in 1970,
when new port technologies were introduced, making convergence an unlikely explanation.

While the timing of these trends suggests that new port technologies may be a driving
force, we perform a stronger test based on exogenous variation in a city’s suitability to new
port technologies. In particular, we show that if a city is more suitable to new technologies
for exogenous reasons, it experiences faster shipping growth if its initial population is small.
To this end, we introduce a novel measure of exogenous suitability to new port technologies
that we will use throughout the paper.

Exogenous port suitability

We use the area of deep sea around, but not directly at the city to isolate exogenous
variation in port suitability. A large area of depth around the city became a locational
advantage for modern ports for at least two reasons. First, ships have become vastly bigger,
requiring greater depth (Brooks et al., 2018). Second, depth over a large area has become
important as modern ports achieve part of their cost-efficiency through fast turnaround times
for cargo, and through scale. Up to the 1950s, a ship would often spend weeks berthing in
port, while today, ships turn around in as little as 24 hours (Hoffmann and Sirimanne, 2017;
Levinson, 2010). This requires ships (many of which operate on regular schedules similar
to buses) to wait in the vicinity of the port before their berthing time starts. Depth over a
large area allows for more ships to be berthed in parallel to achieve scale, and for ships to

14An example is London, UK which was one of the largest ports until the 1950s and is today served
predominantly by Felixstowe, over 100km outside of the city.
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wait in the direct vicinity of the port achieving faster turnaround times. Figure 5 illustrates
this point by contrasting the distance at which ships are anchored waiting to berth in Los
Angeles, a large, successful containerized port, and Buenos Aires, a top 10 port in terms of
shipping flows in 1951, but one that lost significant ground by the 1990s. Figure 6, plotting
depths around the two ports, makes clear why ships need to anchor much further from the
port in Buenos Aires; differently from Los Angeles, as the sea around Buenos Aires is not
very deep, ships waiting to berth have to remain anchored in deep water at a distance of
about 50 kms from the actual port. This will increase turnaround times as ships cannot wait
close to the port itself. This implies that even holding both ship and port sizes constant,
successful modern ports need depth over a larger body of water to remain competitive.

Following Brooks et al. (2018), we think of depth as an exogenous cost-shifter that makes
it cheaper for a port to reach a desired depth by investing in costly dredging. The empirical
challenge is that observed port depth is a combination of naturally endowed depth and depth
attained by dredging. To isolate the exogenous component of this, we construct a novel
measure of depth around the port using granular data on underwater elevation levels.15 We
take buffer rings of various sizes around the geocode of the port and sum the number of
sea cells deeper than a particular threshold within each buffer. This measure captures two
sources of variation that affect a city’s suitability to become a modern port. First, it captures
the availability of large bodies of water around the city, which is important given the larger
size of modern ports. Second, it also depends on the depth of the sea around the port, which
affects the costliness of becoming a modern deep-sea port.

To operationalize this measure of naturally endowed port depth, we need to choose the
buffer and the threshold depth. As there is no guidance for picking these, our approach is to
pick a baseline and examine the sensitivity of our estimates based on changing the buffer or
threshold. Our baseline measure of exogenous port suitability (port suitability, henceforth)
is 1 plus the log of the sum of cells in the 5-10 km buffer ring around the port that are deeper
than 30 feet.16 We plot the spatial distribution of port suitability on Figure 7. Reassuringly,
there is significant variation even for cities relatively close to each other. However, we test
for spatial correlation in robustness checks.

15Data on underwater elevation levels are from the Gridded Bathymetric Chart of the Oceans.
16The depth measure used in Brooks et al. (2018) also uses a 30 foot cutoff, though depth in that paper

is measured at the port in 1953 as reported in the World Port Index. Note that while Brooks et al. (2018)
use depth at the port to predict which ports get containerized in the US (a binary indicator), this type of
point-based depth measure does not predict shipping flows well in our worldwide dataset. This is possibly
due to the fact that the area based measure used in this paper has better predictive power for whether the
port is able to achieve the scale required for becoming a large modern port.
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One concern with this source of variation is that natural port depth has always conferred
some advantage to a location, as it lessened the requirement for costly dredging. While this
is certainly true, until the advent of modern port technologies, depth was not required across
such a large area, implying that it became far more costly to attain a particular depth for
the entire port after the advent of modern port technologies.17

Given we observe shipping flows from 1950 onwards, we can test the extent to which
our measure of port suitability explains shipping in the period after, but not before the
arrival of new port technologies. We estimate the effect of port suitability on shipping
flows allowing the coefficient to differ by decade in a specification that includes city and
year fixed effects in column (1) of Table 3. Cities that have better port suitability witness
faster growth in shipping in the decades following 1960, but not before. The coefficient
on the interaction between port suitability and the 1960 decade dummy is small and not
statistically significant. In the decades following 1960, once new port technologies were being
adopted worldwide, cities with higher port suitability witnessed faster growth in shipping
flows. The coefficients increase in size by more than an order of magnitude relative to 1960
and are highly statistically significant. Column (2) estimates the effect of port suitability on
the growth of shipping flows after 1960 with a single coefficient that measures the effect of
port suitability on shipping flows after containerization relative to before. Consistent with
column (2), shipping increased disproportionately in cities with higher port suitability after
1960. Table 12 in the online appendix contains robustness checks to the buffer used and the
variation included in the port suitability measure.18 In the remainder of the paper, we use
our baseline measure of port suitability to isolate exogenous variation in shipping flows.

Returning to our specification of interest, we want to understand the extent to which
differential shipping growth across initial population size quartiles has a causal interpretation.
To answer this question, we examine heterogeneity in the effect of port suitability on shipping
by size quartile. Column (3) re-estimates the effect of port suitability on the growth of
shipping flows after 1960 (as in column (2)), but allowing for the effect to vary by initial size
quartile. The effect on the initially smallest three quartiles of cities is the largest and highly
significant. The three quartiles are similar in magnitude. However, there is a markedly
smaller effect on the initially largest cities. The coefficient is almost halved in size and is

17For example, MacElwee (1925) writes that New York, one of the largest ports of the world at the time,
had a dredged channel of 40 feet to only some, but by no means all parts of the harbor.

18Port suitability as measured by the sum of cells above 30 feet deep has similar predictive power at buffers
between 3-15km. The measure does not have sufficient predictive power at closer buffers, and it’s strength
falls farther away from the port.
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statistically different from the smallest quartile at 10% significance. This implies that cities
with the same exogenous suitability to new port technologies respond differently based on
their initial size.

Taking these results together, ports reallocated from large to smaller cities in the period
after the arrival of new port technologies. This was accounted for by initially smaller cities
increasing their shipping flows disproportionately relative to the initially largest ones. These
effects are partly driven by the fact that cities equally well-suited to modern port technologies
responded more to the arrival of new port technologies if they were smaller in size. Why
would the arrival of new port technologies lead to this type of reallocation of ports? Informed
by the nature of new port technologies, we hypothesize that this is due to a land-price
mechanism. As new port technologies use land more intensively than the technology they
replace, it became more costly to host port services in the largest, most congested cities
where the opportunity cost of land was the greatest. The following section provides several
pieces of evidence to support this claim.

3.2 Reallocation driven by the land mechanism

First, we examine the extent to which shipping responds differentially based on the elasticity
of land supply in a city. If our hypothesis is correct, setting up port services should be more
attractive in cities where land is cheaper and where it is easier for the city to expand. To test
this mechanism, we proxy for the price of land by constructing the Saiz land supply measure
for our sample of port cities (Saiz, 2010). This measure captures the extent to which a city is
constrained by natural barriers to expanding in size such as the presence of bodies of water,
or high elevation.19 We estimate heterogeneous effects in land supply elasticity by including
an interaction term of port suitability and the Saiz land supply elasticity to the specification
estimated in column (2) of Table 3 (which switches on only in the decades including and
after 1970). We plot the marginal effect of port suitability on shipping evaluated at different
values of the Saiz land supply elasticity measure in Figure 8. There is a considerable amount
of heterogeneity in land supply elasticity. At low values of the land supply elasticity (around
0), the effect of port suitability on shipping is about 0.1 and marginally insignificant at 10%,

19More formally, we replicate the Saiz measure as closely as possible by summing the number of cells in
a circle of radius 50km where the city can potentially expand. This circle excludes bodies of water and
overland cells where the elevation slope is greater than 15%. This measure is naturally bounded between
0 and 1, with higher values corresponding to a larger share of cells along which the city can expand. In
practice, the Saiz measure in our sample of cities spans almost the whole range of values between 0 and 1,
with a median of 0.51.
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which is roughly half the size of the baseline effect of 0.21 in column (2) of Table 3. At
intermediate values (around 0.5), the effect is around 0.2, highly statistically significant and
roughly the same size as the baseline coefficient. At the highest values of the Saiz measure
(around 1), the effect is larger than 0.3, or about 50% larger than the baseline effect. Based
on this, shipping increased significantly more in cities that were equally suitable for modern
port activities based on the amount of deep sea area available in the vicinity of the city, but
where land was in more elastic supply, consistent with our hypothesized mechanism.

Second, if the land price mechanism is at work after the arrival of new port technologies,
the share of land allocated to the port should grow differentially between large and small
cities. Larger, more congested cities tend to have higher land prices. Hence, all else equal,
larger cities should allocate less land to ports according to our hypothesis. We investigate
this by plotting the binscatter of the share of land allocated to the port in Figure 9 against
its concurrent population level in the years 1950-1990. Contrary to the strong, positive
correlation evident in the data between shipping and population throughout our sample
period, we find that there is a negative correlation between the share of land allocated to
the port and its population in 1990. That is, larger cities dedicate a smaller share of land to
their port, despite the fact that they have larger shipping flows as discussed in the previous
section. Moreover, this has not always been the case. The correlation between port area
and population was strongly positive in the 1950s and 1960s and weakened thereafter before
turning negative in the 1980s.20 While these estimates do not have a causal interpretation,
they do suggest that large cities are relatively less specialized in port services than smaller
cities in terms of their land allocation.

Finally, we examine the local, reduced form effects of shipping. Improvements in trans-
portation infrastructure can have positive local effects by making the location more attractive
for firms and consumers. However, our land price mechanism suggests that hosting trans-
portation infrastructure may also be costly for a location, as it crowds out other productive
activities through the vast amounts of land that modern port activities require. Our em-
pirical setting provides an indirect way of testing this. First, we estimate the local effect of
shipping on economic activity in the port city using our panel of shipping flows for 1950-1990.
Our proxy for economic activity is the population of the city. We estimate a standard panel
specification of population in city i at time t on contemporaneous shipping flows where we
include city and time fixed effects. We isolate exogenous variation in shipping using our port

20Table 4 presents the regression coefficients for these specifications, both in the log of population and in
levels.
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suitability measure interacted with a binary indicator that takes the value of one in decades
after and including 1970. Table 5 includes the baseline estimation results. Both the OLS
and the 2SLS estimates are positive and highly significant, with the 2SLS estimates being
somewhat larger. According to the 2SLS estimate, doubling shipping increases population
by 14% on average. The first stage and reduced form estimates (column 3 and 4) are of
the expected positive sign and highly statistically significant. The KP F-stat for the first
stage is 28. Columns (5) and (6) show the pre-trends test for both the reduced form and the
first stage; the effect of port suitability on shipping and population before the adoption of
modern port technologies is small and statistically not different from zero. The coefficient
becomes large, positive and highly significant in 1970 and stays high throughout the sample
period.

In line with previous findings in the literature (Brooks et al., 2018), the local effect of
shipping on economic activity is positive.21 Having established that our estimated effect on
port cities is similar to findings in the previous literature, we turn to examining whether
there is evidence for the land-price mechanism. We test for this in the following way; cities
near a port benefit similarly (although not equivalently) from improvements in market access
when ports get bigger, but would not face the same cost in terms of allocating scarce land
to the port. If the cost effect is sufficiently strong, we would expect the estimated effect on
nearby inland cities to be larger than that on port cities. We assign inland cities to their
nearest port (reachable overland) and estimate the same specification as for port cities. We
estimate the effect on distance intervals of 100 kilometres in rolling windows of 25 kilometers
(the first specification includes all cities 0-100km from their nearest port, the next 25-125km
from their nearest port and so forth). Figure 10 displays the 2SLS coefficient estimates and
their 10% confidence intervals for the port city (own effect) and the effect on nearby inland
cities. The results are striking. The estimated effect for nearby inland cities is consistently
larger than that for the port city until the 100-200km buffer is reached, though the confidence
intervals do overlap. At 100-200km, the coefficient starts shrinking towards zero and is no
longer statistically significant.22

21We subject these results to a variety of robustness checks. We drop continents one at a time (Figure 15),
test robustness of the results to the inclusion of non-parametric time trends by continent, ocean and initial
size groups (Table 13), and estimate the long difference (Table 14 and Figure 16).

22Table 6 contains the estimates for the specifications plotted in Figure 10, including the pre-trends tests
for each specification. It should be noted that these specifications include non parametric continent-by-year
time trends. The reason for this is that inland cities are vastly over-represented for some continents as Figure
2 shows. For this reason, pre-trends are apparent in the specifications that do not include continent-by-year
trends. Figure 14 and Table 15 show that while the result that the effect on nearby inland cities is larger
than the port city holds for these specifications, these should not be interpreted as causal because of the
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This section has presented three pieces of evidence that support our hypothesized land-
price mechanism. While there are alternative mechanisms that may explain each separately,
we view the three together as providing strong, reduced form evidence for the hypothesis that
the land price mechanism is partly driving the reallocation of ports from big to smaller cities.
In particular, the larger estimated effect on inland cities is causal evidence that suggests port
cities face a cost of shipping activities that does not affect nearby inland cities in the same
way. While this piece of evidence is silent on what that cost could be, the other two pieces
of evidence speak directly to the land-price mechanism.

In summary, while the local (net) benefit of shipping are positive, there seem to be
important costs associated with investing in modern port infrastructure. Based on the
findings presented in this section, these costs are arguably driven by the fact that modern
ports require vastly more land, which make port activities particularly costly in bigger,
higher land price cities. Separating the costs and benefits of port infrastructure investments
using only reduced form empirical methods is difficult however. For this reason, the next
section presents a quantitative, general-equilibrium spatial model that incorporates both
the benefits of investing in port infrastructure by way of improved market access, but also
the costs it imposes on host cities through the land market. As we show below, the model
suggests and empirical strategy for separating the costs and benefits. Additionally, it is
sufficiently rich to allow us to quantitatively estimate the effects of new port technologies in
general equilibrium.

4 A model of cities and endogenous port development

To study the costs and benefits of port development as well as the aggregate effects of port
development induced by new port technologies, we develop a quantitative general equilibrium
model of trade across cities. In the model, we explicitly take into account the fact that port
cities can endogenously develop their port to benefit from new port technologies. Developing
the port, however, is costly as it requires scarce land that can be used for other purposes.
In equilibrium, cities will differ in the benefits and costs of developing the port, which will
make certain cities gain relative to others and trigger a reallocation of both shipping and
overall economic activity across cities.

Section 4.1 outlines the setup, while Section 4.2 discusses the qualitative predictions that
the model delivers on port development and its consequences on the spatial distribution of

violation of pre-trends.
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population across cities.

4.1 Setup

The world consists of S > 0 cities, indexed by r or s. An exogenously given subset of cities
are port cities, while the rest are inland cities. We make the Armington assumption that
each city produces one variety of a differentiated final good that we also index by r or s
(Anderson, 1979). Each city belongs to one country, and each country is inhabited by an
exogenous mass of workers who choose the city in which they want to live. Mobility across
cities is, however, subject to frictions.

4.1.1 Workers

Each worker owns one unit of labor that she supplies in her city of residence. The utility of
a worker j who chooses to live in city r is given by

uj (r) =
[
S∑
s=1

qj (r, s)
σ−1
σ

] σ
σ−1

a (r) bj (r)

where qj (r, s) is the worker’s consumption of the good made in city s, a (r) is the level of
amenities in city r, and bj (r) is an idiosyncratic city taste shifter.

The dispersion of bj (r) represents the severity of cross-city mobility frictions that workers
face, similar to Kennan and Walker (2011) and Monte et al. (2018). To see why this is the
case, note that if bj (r) do not vary across workers or cities, then any increase in income
or amenities at r translates into a massive flow of workers towards r. On the other hand,
if bj (r) are very dispersed, then workers move to the cities they prefer for idiosyncratic
reasons, hence changes in economic fundamentals lead to little migration. For tractability,
we assume that bj (r) is drawn from a Fréchet distribution with shape parameter 1/η and
a scale parameter normalized to one. Hence, a larger value of η corresponds to more severe
frictions to mobility.

4.1.2 Landlords

Each city r is also inhabited by a positive mass of immobile landlords who own the exoge-
nously given stock of land available in the city. We normalize the stock of land in each city
to one. Landlords have the same preferences as workers. They do not work but finance their
consumption from the revenues they collect after their stock of land.
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Each landlord is small relative to the total mass of landlords in the city and hence
thinks that she cannot influence prices. Yet, the mass of landlords is small enough that the
population of each city can be approximated well with the mass of workers who choose to
reside in the city.

In non-port cities, landlords rent out their land to firms that produce the city-specific
good. In port cities, landlords can also use part of their land to provide transshipment ser-
vices. The more land they use for transshipment services, the more the cost of transshipping
a unit of a good through the port decreases. The landlord can charge a price for the trans-
shipment service she provides. Competition among port city landlords drives down this price
to marginal cost and hence profits from transshipment services are zero in equilibrium.23

4.1.3 Production

Firms can freely enter the production of the city-specific good. Hence, they take all prices
as given and make zero profits. Production requires labor and land. The representative firm
operating in city r faces the production function

q (r) = Ã (r)n (r)γ (1− F (r))1−γ

where q (r) denotes the firm’s output, Ã (r) is total factor productivity in the city, n (r) is
the amount of labor used by the firm, and F (r) is the share of land that landlords in the
city use for transshipment services (thus, F (r) = 0 in inland cities). Hence, 1− F (r) is the
remainder of land that landlords rent out to firms for production.

We incorporate agglomeration economies by assuming that total factor productivity de-
pends on the population of the city, N (r):

Ã (r) = A (r)N (r)α

where A (r) is the exogenous fundamental productivity of the city, and α ≥ 0 is a parameter
that captures the strength of agglomeration economies. The representative firm does not
internalize the effect that its labor demand decision has on local population. Hence, it takes
N (r) as given.

23We assume that the stocks of land owned by the various landlords in a given port city do not differ
in quality or proximity to water, hence they are equally suitable to transshipment services. However, we
incorporate the fact that port cities are differentially suitable to transshipment services (for instance, they
have different natural port depth) by incorporating an exogenous part of transshipment costs that varies
across cities.
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4.1.4 Shipping and port development

Firms in city r can ship their product to any destination s ∈ S. Shipping is, however, subject
to iceberg costs: if a firm i from city r wants to ship its product over a route ρ that connects
r with s, then it needs to ship T (ρ, i) units of the product such that one unit arrives at s.
Shipping costs consist of a component common across firms T̄ (ρ), as well as a firm-specific
idiosyncratic component ε (ρ, i) that is distributed iid across firms and shipping routes:24

T (ρ, i) = T̄ (ρ) ε (ρ, i)

For tractability, we assume that ε (ρ, i) is drawn from a Weibull distribution with shape
parameter θ and a scale parameter normalized to one. Firms only learn the realizations
of their idiosyncratic cost shifters after making their production decisions. Therefore, they
make these decisions based on the expected value of shipping costs,

E [T (ρ, i)] = T̄ (ρ) E [ε (ρ, i)] = T̄ (ρ) Γ
(
θ + 1
θ

)
.

After learning ε (ρ, i), they choose the route that minimizes their total shipping costs.
Certain shipping routes involve land shipping only (land-only), while others involve a

combination of land and sea shipping through a set of ports (land-and-sea). Land-only
shipping is only available between cities that are directly connected by land. The common
cost of land-only shipping between cities r and s is an increasing function of the minimum
overland distance between the two cities, d (r, s):

T̄ (ρ) = 1 + φς (d (r, s))

The cost of land-and-sea shipping depends on the set of ports en route. In particular,
the common cost of shipping from r to s through port cities p0, ..., pM takes the form

T̄ (ρ) = [1 + φς (d (r, p0))] [1 + φς (d (pM , s))]
M−1∏
m=0

[1 + φτ (d (pm, pm+1))]
M∏
m=0

[1 +O (pm)]

where φς (d (r, p0)) corresponds to the overland shipping cost between the origin and the first
24The assumption of idiosyncratic shipping cost shifters follows Allen and Atkin (2017) and Allen and

Arkolakis (2019), and allows us to tractably characterize shipping flows with a large number of cities. In
the alternative case with no idiosyncratic shifters, applied in Allen and Arkolakis (2014) and Nagy (2017),
finding optimal shipping flows is computationally more demanding.
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port en route p0, and φς (d (pM , s)) corresponds to the overland shipping cost between the
last port en route pM and the destination. φτ (d (pm, pm+1)) denotes the sea shipping cost
between ports pm and pm+1, a function of the minimum sea distance between the two ports,
d (pm, pm+1). Finally, O (pm) denotes the price that the firm needs to pay for transshipment
services in port city pm.25

Transshipment costs are central to our analysis as these are the costs that port city
landlords can lower by developing the port, that is, by allocating more land to the port. In
particular, we assume that the landlord’s cost of handling one unit of a good at port pm
equals

[ν (pm) + ψ (F (pm))]Shipping (pm)λ

where ν (pm) is an exogenous cost shifter capturing the fundamental efficiency of port pm,
ψ (F (pm)) is a non-negative, strictly decreasing and strictly convex function of F (pm), the
share of land allocated to the port, and Shipping (pm)λ captures congestion externalities
arising from the fact that handling one unit of cargo becomes more costly as the total
amount of shipping, Shipping (pm), increases for a given port size.26 As each port city
landlord is atomistic, she takes the price of transshipment services O (pm) and the total port-
level shipping Shipping (pm) as given when choosing F (pm). Moreover, perfect competition
among port city landlords ensures that the price of the transshipment services is driven down
to marginal cost and therefore

O (pm) = [ν (pm) + ψ (F (pm))]Shipping (pm)λ

in equilibrium.

4.1.5 Equilibrium

In equilibrium, workers choose their consumption of goods and residence to maximize their
utility, taking prices and wages as given. Landlords choose their consumption and land use
to maximize their utility, taking prices, land rents and shipping flows as given. Finally,
firms choose their production and shipping of goods to maximize their profits, taking prices,

25Note that this formulation does not allow for land shipping between two subsequent ports along the
route. In practice, this is extremely unlikely to arise as land shipping is substantially more expensive than
sea shipping.

26To be precise, Shipping (pm) is defined as the dollar amount of shipping flowing through port pm,
excluding the price of transshipment services at pm. We exclude the price of transshipment services from
the definition of Shipping (pm) as it simplifies the procedure of taking the model to the data.
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land rents and wages as given. Competition drives profits from production and profits from
transshipment services down to zero. Markets for goods, land and labor clear in each city,
and markets for transshipment services clear in each port city.27

4.2 Predictions of the model

This section presents the qualitative predictions that the equilibrium conditions of the model
deliver on port development and its consequences on the spatial distribution of population
across cities. These predictions follow from the equilibrium conditions of the model, which
are derived in the Theory appendix.

In equilibrium, the share of land allocated to the port in port city r is the solution to the
equation

− ψ′ (F (r)) = R (r)
Shipping (r)1+λ (1)

where R (r) denotes land rents in city r, given by

R (r) = 1− γ
γ

w (r)N (r)
1− F (r) (2)

such that w (r) is the wage in city r. As the left-hand side of equation (1) is decreasing in
F (r) by the convexity of ψ, we have the following two propositions.

Proposition 1. Land allocated to the port is increasing in the amount of shipping flows.

Proposition 1 is the consequence of two forces in the model. The first is economies of
scale in port technology: as shipping flows increase, it becomes profitable to lower unit costs
by allocating more land to the port. The second force is congestion: an increase in shipping
flows makes landlords allocate more land to the port to palliate congestion. The two effects
together imply that new port technologies that lower shipping costs and increase shipping
flows lead to more land allocated to the port, in line with what we have documented in the
data.

27This equilibrium definition implies that we do not give landlords the right to choose the amount of
transshipment they conduct; in other words, landlords cannot refuse the provision of transshipment services
to anyone at the market price. This assumption is needed for computational tractability, as it allows us to
abstract from a corner solution in which the supply of transshipment services is zero. In line with this logic,
we can relax the assumption and allow landlords to choose any positive amount of transshipment, but not
zero transshipment. Generalizing the model this way does not change the equilibrium as landlords’ profits
are linear in the amount of transshipment and zero in equilibrium, hence landlords are indifferent between
transshipping any two amounts as long as they are both positive.

24



Proposition 2. Land allocated to the port is decreasing in land rents.

Proposition 2 highlights that the cost of adopting new port technologies differs across
cities. Those cities that have high land rents do not allocate much land to the port as
the opportunity cost of land is very high. As cities with smaller population tend to have
lower rents by equation (2), this finding suggests that port development must have happened
primarily in small cities. Hence, new port technologies should have triggered a reallocation
of shipping from large to small port cities, consistent with what we have documented in the
data.

Finally, the model delivers the spatial distribution of population N (r) as the solution to
the following equation:

N (r)[1+ησ+(1−γ−α)(σ−1)] σ−1
2σ−1 = γσ−1ã (r)

σ(σ−1)
2σ−1 A (r)

(σ−1)2
2σ−1 (1− F (r))(1−γ) (σ−1)2

2σ−1 MA (r) (3)

where MA (r) is the market access of city r, given by

MA (r) =
S∑
s=1

ã (s)
(σ−1)2
2σ−1 A (s)

σ(σ−1)
2σ−1 (1− F (s))(1−γ)σ(σ−1)

2σ−1 N (s)[1−η(σ−1)−(1−γ−α)σ] σ−1
2σ−1

E [T (r, s)]σ−1

and ã (r) can be obtained by scaling amenities a (r) according to

ã (r) = ℵca (r)

where the endogenous country-specific scaling factor ℵc adjusts such that the exogenously
given population of country c equals the sum of the populations of its cities.

How is the population of a port city affected by the development of its port? Our last
proposition shows that the net effect on population is the outcome of two opposing forces: a
market access effect that increases the population of the city, and a crowding-out effect that
leads to a decrease in the city’s population.

Proposition 3. An increase in the share of land allocated to the port in city r, F (r), de-
creases shipping costs E [T (r, s)], thus increasing MA (r). Everything else fixed, an increase
in MA (r) increases the population of the city (market access effect). At the same time,
holding MA (r) fixed, an increase in F (r) decreases the share of land that can be used for
production, 1− F (r), thus decreasing the population of the city (crowding-out effect).

Proposition 3 sheds light on the fact that, to measure the net effect of port development,
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it is essential to consider both its benefits and its costs. On the one hand, port development
lowers shipping costs. On the other hand, it requires scarce local land that needs to be
reallocated from other productive uses. The model, and equation (3) in particular, provide
a structure that allows us to capture these opposing forces. The next section is aimed at
looking for evidence on these opposing forces in the data.

5 Empirical evidence for the model’s mechanisms

In this section, we re-estimate the effect of port development on economic activity guided
by the insights of the model presented in the previous section. Section 3 showed that the
reduced form effect of port development on population was positive in port cities. The model
suggests two opposing forces at work; the direct effect of port development is to crowd out
population as increased competition for scarce land drives up rents, while the indirect effect
is a decrease in transportation costs that improves a city’s market access, thereby drawing
population in. We examine whether the data are consistent with the forces in the model by
estimating the following specification:

POPit = αi + δt + φ1 ∗ SHIPit + φ2 ∗MAit + εit (4)

whereMAit = ln
(∑S

s=1
POP

[1−η(σ−1)−(1−γ−α)σ] σ−1
2σ−1

st

E[Tt(i,s)]σ−1

)
is the empirical equivalent of the model-

based market access term.
The difference with respect to the reduced form estimating equation presented in Section

3 is that in light of the model, once we control for the market access of a city, φ1 should
recover the direct effect of increased shipping activity, which we expect to be negative. In
contrast, we expect φ2, the elasticity of population to market access, to be positive. We view
this specification as a test for the model forces as the shipping term captures any (positive
or negative) effect of shipping on population above and beyond the effect stemming from
improved market access.

It should be noted that estimating equation (4) does not exactly correspond to equation
(3) in the model. The key difference is that we proxy time-varying port size using shipping
flows to estimate the direct effect of port development (φ1), and we do not include port size
in the market access term. However, even the simplified version of the estimating equation
presents a number of empirical challenges.

First, there is a question regarding what the baseline sample should be. The model
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applies to all cities, regardless of whether they are inland or port cities. However, as port
development opportunities are only available for port cities, the crowding-out mechanism will
only be relevant for these cities. Moreover, the IV-s used to identify φ1 and φ2 (explained
below) are only defined for port cities. Accounting for inland cities, however, is important
as the general equilibrium effects of port development elsewhere will impact population and
trade costs to these cities, and hence affect port cities. For this reason, while the specifications
are estimated on the set of port cities in our city dataset, the market access of port cities is
calculated using the full set of (inland and port) cities.

Second, time-varying bilateral trade costs E [T (i, s)] between origin and destination are
not observed in the data. To overcome this challenge, we estimate time-varying bilateral
iceberg trade costs between all cities (inland and port) in our dataset. More specifically,
we incorporate three types of costs: 1. the cost of shipping overland, 2. the cost of sea
shipping, and 3. the transshipment costs associated with crossing ports. We use the following
parameters to calculate the lowest shipping costs between each pair of cities using a fast-
marching algorithm. Based on Allen and Arkolakis (2014), we assume that the overland
shipping cost φς and the sea shipping cost φτ take the form

φς (d) = etςd φτ (d) = etτd

where d is distance traveled, and set the values of tς and tτ to the corresponding road and
sea shipping cost elasticities estimated by Allen and Arkolakis (2014).28

There are no readily available measures of transshipment costs that we are aware of. To
construct these, we use the following approach. Both the model and the literature on port
development suggest that larger ports are more efficient. We use port efficiency measures,
available for a subset of our sample from Blonigen and Wilson (2008), to estimate the
empirical relationship between port efficiency and shipping flows at the port level in our
data. We use the estimated coefficient from this regression to predict port efficiency for all
the ports in our data across each decade.29 Note that changing transshipment costs are the

28Allen and Arkolakis (2014) also allow for fixed costs of inland and sea shipping. However, they set the
fixed costs of road shipping to zero. In the case of sea shipping, our aim is to define transshipment costs in
a broad sense such that they include any cost that is not a function of shipping distance, such as fixed costs
of sea transportation.

29The port efficiency measures are estimated as exporter port fixed effects in a regression of bilateral
HS 6-digit product level import charges that control for distance, value, value-to-weight, percentage of
containerized traffic between the two ports, trade imbalances, time, product and importer port fixed effects
using US census data. The exporter fixed effects are all estimated relative to the efficiency of the port of
Rotterdam. For our purposes, these relative port efficiencies need to be scaled to levels. We do this by
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only source of time series variation in our estimated trade costs.
Third, the model-based measure of market access requires taking a stand on the values of

the parameters η, σ, γ and α. Table 7 contains the parameter values we use and their source.
As we use the same values when taking the full model to the data, Section 6.3 discusses the
calibration of all structural parameters in detail.

Identifying φ1 and φ2 requires two sources of exogenous variation. The two IV-s we
propose build on our measure of exogenous port suitability. We use the baseline measure of
depth in the vicinity of the port as one instrument and construct a second instrument for
market access based on the insight that the depth of other ports reduces bilateral trade costs
and hence affects the market access term. In particular, other cities’ port depth should affect
bilateral trade costs from that city to all of its trading partners. Based on this reasoning,
our second instrument is defined as follows:

MAIVit =
∑
s

POP
[1−η(σ−1)−(1−γ−α)σ] σ−1

2σ−1
s,1950(

T̂t (i, s)
)σ−1

where T̂t, predicted transport cost, is predicted based on bilateral distance, and depth if
year ≥ 1970. That is, we replace the bilateral trade cost terms in the market access measure
with the predicted decrease in transport costs between i and s driven by the exogenous port
suitability of trading partner s.

Table 8 presents the estimation results. Columns (1) to (2) report the baseline reduced
form OLS and 2SLS estimates for comparison. Columns (3) and (4) add the measure of
market access as a control. The OLS estimate in column (3) shows a smaller effect of shipping
on population relative to column (1) that is not distinguishable from zero. Column (4) shows
the 2SLS specification. Consistent with the predictions of the model, once we control for
market access, shipping has a negative, statistically significant effect on population. The
instruments are strong, yielding a combined Kleibergen-Paap F-statistic of 14.27.30

In summary, while the reduced form estimates show a net benefit of shipping on economic
activity, based on the model inspired regressions, this is the result of two opposing forces. On

setting the iceberg trade cost of passing through Rotterdam to be 1.004. This is based on industry reports
of port handling costs of $140 AUD for a container and on a 20,000 EUR estimate of the average value of
a container. In the fast marching algorithm, all ports in our sample, not only the ones that belong to a
city with greater than 100,000 inhabitants are included. This is to ensure that we allow transshipment also
through these smaller stand-alone ports, which may be transshipment hubs.

30The online appendix shows that these results are robust to adding controls for non-parametric time
trends in initial city size, continent or ocean (Table 16). Additionally, we show that the results are also
robust to dropping cities in the close vicinity of the port city in the market access IV (Table 17).
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the one hand, new port technologies improve a location’s market access, drawing population
in. On the other hand, there seems to be a strong negative direct effect of shipping on
economic activity, consistent with crowding out. We conclude that this lends well-identified
evidence for the model mechanisms. In the next section, we therefore turn to taking the full
model to the data.

6 Taking the model to the data

Armed with evidence for the model’s main mechanisms, we take the full structure of the
model to the data in this section. This allows us to draw aggregate conclusions about the
effects of changing port technologies in Section 8.

6.1 Backing out city-specific fundamentals

We combine data on city population, shipping flow and GDP per capita with the structure
of the model to find the set of city amenities, productivities and exogenous transshipment
costs ν (r) that rationalize the data. As the city population data are available for our 2,636
Geopolis cities, we choose these cities as the units of analysis. We observe shipping flows for
the subset of Geopolis cities that are port cities. Following the time-invariant definition of
port cities discussed in Section 2, a port city is defined as being a city with positive shipping
flows in at least one of the decades between 1950 and 1990. We define inland cities as the
remaining set of Geopolis cities. This gives us 553 port cities and 2,083 inland cities.31

City-level GDP per capita data are not readily available for our set of cities. We estimate
GDP per capita for our full sample of 2,636 worldwide cities in the following way. We
purchased estimates of city GDP from the Canback Global Income Distribution Database
for a subset of our sample (898 cities) for which data are reported for 1990.32 We predict
GDP per capita for our full sample using the linear fit of GDP per capita data from Canback
on nightlight luminosity and country-fixed effects, building on a growing body of evidence
suggesting that income can be reasonably approximated using nightlight luminosity data
(Donaldson and Storeygard, 2016).33

31See Section 2 for further details on the city population and shipping data.
32In particular, we merge the Canback data with our city list, and construct GDP per capita from the

level of GDP and the population data provided by Canback. GDP are reported at purchasing power parity
(in 2005 USD).

33Most of the papers in this literature estimate the level of GDP within a country, where the level of
development is not as widely dispersed as across the world. To account for these differences and the way in
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Given that our city level GDP data are only available for 1990, we choose to invert the
model based on the 1990 distribution of population, shipping and GDP. Since this data is
measured after the advent of new port technologies, our counterfactual will increase trans-
shipment costs in a way that mimics the lack of these technologies. Hence, the effect of
new port technologies can be assessed by comparing the counterfactual equilibrium (old
technologies) to the 1990 equilibrium (new technologies).

We transform the number of ships observed in the data in port city r in 1990, Ship (r),
into the value of shipments, Shipping (r), according to

Shipping (r) = V · Ship (r)

where the value of V is chosen to match the ratio of shipping to world GDP. The rationale
behind choosing this moment is that it can be calculated as a simple linear function of V :

∑
r Shipping (r)∑
rGDP (r) = V ·

∑
r Ship (r)∑
rGDP (r)

where Ship (r) and GDP (r) are both observable in the data. This procedure gives us a
value of V = 364.34

GDP per capita maps into wages as

w (r) = γ
GDP (r)
N (r)

according to the model, where structural parameter γ is calibrated to 0.84, as explained in
Section 6.3.

Once population N (r) and wages w (r) are available for each city and the value of ship-
ments Shipping (r) is available for each port city, the equilibrium conditions of the model
can be inverted to back out city amenities up to a country-level scale, ã (r), fundamental city
productivities A (r), and each port city’s exogenous transshipment costs ν (r). We provide
the details of this inversion procedure in the Theory appendix.35

which they affect luminosity, we include country fixed effects.
34As not all our port cities have a positive number of ships in 1990 but the model cannot rationalize zero

shipping flows under finite values of city-specific fundamentals, we change Ship (r) from zero to one in these
cities.

35The complex structure of the model does not allow us to prove that the inversion procedure identifies
a unique set of ã (r) , A (r) and ν (r). Nonetheless, we have experimented with various different initial
guesses, and the inversion algorithm converges to the same fixed point, suggesting that the set of city-specific
fundamentals that rationalize the data may be unique.
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6.2 Shipping costs

We follow our strategy outlined in Section 5 to calculate inland and sea shipping costs as a
function of distance d, assuming

φς (d) = etςd φτ (d) = etτd

and setting the elasticites tς and tτ to the corresponding estimates in Allen and Arkolakis
(2014).36

We also need to choose endogenous transshipment costs as a function of the share of
land allocated to the port (port share, henceforth), ψ (F ). The existing literature provides
us with little guidance on this, as ours is the first paper that argues for the relevance of this
relationship in a quantitative trade and geography framework. Hence, our goal is to keep the
functional form of ψ as simple as possible. That said, the functional form needs to satisfy our
theoretical restrictions (ψ ≥ 0, ψ′ < 0, ψ′′ > 0) and needs to be numerically tractable in the
model inversion and counterfactual simulations. In particular, the range of ψ′ should ideally
span the entire (−∞, 0) interval over its domain (0, 1), as otherwise it would be potentially
impossible to obtain port shares that rationalize the GDP and shipping data in every port
city from equations (1) and (2). One simple function that satisfies all these restrictions is

ψ′ (F ) = 1− F−β (5)

where β > 0 to guarantee ψ′ < 0. We can obtain ψ by integrating equation (5) as

ψ (F ) = F β + (β − 1)−1

F β−1 + κ

where κ ≥ κ̄ = −
[
1 + (β − 1)−1

]
to guarantee ψ ≥ 0.

As total transshipment costs in city r equal [ν (r) + ψ (F (r))]Shipping (r)λ, κ is isomor-
phic to a uniform shifter in exogenous port costs ν (r) and cannot be identified separately
from them as a result. Thus, we set κ to its theoretical lower bound κ̄ without loss of gen-
erality when taking the model to the data. However, we do change κ in our counterfactual
when our aim is to change transshipment costs back to their level prior to the advent of new
port technologies.

Given the role that β plays in driving the relationship between shipping and the port
36See Section 5 for details.

31



share according to equations (1) and (5), we calibrate this parameter to match the correlation
between these two variables in the data. This gives us a value of β = 0.023.

6.3 Structural parameters

We are left with choosing the values of the model’s six structural parameters. On the
production side, we take the estimate of the strength of agglomeration externalities, α = 0.06,
from Ciccone and Hall (1996), which has performed well in the literature for various countries
and time periods. α = 0.06 implies that doubling city size increases city productivity by
6%. On the production side, the expenditure shares on labor and land equal γ and 1 − γ,
respectively. Unfortunately, we are not aware of any study that measures the land share
for the entire world. Thus, we base our benchmark value of γ on Desmet and Rappaport
(2017), who estimate a value of 0.10 for the difference between the land share and the
agglomeration elasticity in the United States between 1960 and 2000, a period that almost
exactly corresponds to our period of investigation. Together with α = 0.06, this suggests
setting γ = 0.84.37

On the consumption side, we have two structural parameters: the migration elasticity,
which we set to η = 0.15 based on Kennan and Walker (2011), and the elasticity of substi-
tution across tradable final goods, which we set to σ = 4 based on standard estimates of the
trade elasticity (Simonovska and Waugh, 2014).

Finally, we have two structural parameters influencing shipping costs. One is the dis-
persion of idiosyncratic shipping costs, which – together with the formulation of these costs
– we take from Allen and Arkolakis (2019), setting θ = 203. The other is the elasticity
of transshipment costs with respect to total shipping at the port (congestion externalities),
which we take from the empirical estimates of Abe and Wilson (2009), setting λ = 0.074.
Table 7 summarizes the calibration of our structural parameters.

7 Model fit

This section evaluates our model’s quantitative performance on data that was not targeted in
the calibration. In particular, we can assess the fit of the model to data on the share of land
that cities allocate to the port, which is untargeted. Producing a good fit to the distribution

37Another advantage of using the land share estimate by Desmet and Rappaport (2017) is that it also
accounts for the share of land embedded in housing, which is, strictly speaking, absent from our model but
might matter for the quantitative results.
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of port shares is essential as they are key drivers of our novel mechanism; the crowding-
out effect. Hence, Table 9 provides an extensive comparison between the model-predicted
distribution of port shares F (r) and the port shares observed in the data.

As Panel A of Table 9 demonstrates, the correlation between predicted and actual port
shares is high, irrespectively of whether we calculate it in levels, in logs, or as a rank correla-
tion. To understand whether these high correlations are primarily driven by city population
and GDP (which we match between the model and the data), we compute each city’s resid-
ual port share from a regression in which we include population and GDP on the right-hand
side both in the model and in the data. The correlation between these residual port shares
is even higher than the raw correlation, suggesting that the high correlation is not driven by
the mechanical matching of population and GDP between the model and the data. Rather,
it seems that the model is able to predict well the cities that serve as transshipment ports
for their hinterland.

Next, we look at how predicted and actual port shares relate to other city-specific ob-
servables. Panel B of Table 9 shows the results. Note that we have chosen our structural
parameter β to match the correlation between port share and shipping, so this moment is
targeted in the calibration. Nonetheless, the model also does well in replicating the correla-
tion of port share with city population and GDP, which are untargeted. This is important,
as Section 3 argued that the negative correlation between port share and population in the
current data provides evidence for the presence of the crowding-out mechanism driven by
high land prices in large and expensive cities.

Finally, we investigate how concentrated the distributions of predicted and actual port
shares are by plotting the Lorenz curves of these two distributions (Figure 11). The two
curves are quite close, although the model provides a slightly too low concentration among
large ports relative to the data.38 In other words, the model stops short at fully replicating the
rise of mega-hubs after the advent of new port technologies. This is, however, not surprising
given the functional form of sea shipping costs. As sea shipping costs are exponential in
distance, the triangle inequality holds for them, therefore shippers do not have an incentive
to ship cargo through more than two ports between the origin and the destination. In other
words, hubs that specialize in sea transshipment – transshipping cargo from ship to ship –
do not arise in the model (apart from a few shippers getting good idiosyncratic draws for
routes that involve more than two ports). However, anecdotal evidence suggests that many

38This difference also shows up if we calculate the Gini coefficient to characterize the overall concentration
of port shares: it is 0.736 in the data but lower, 0.625, in the model.
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of the largest ports specialize in sea transshipment in the data. Hence, it is not surprising
that the model, lacking these types of ports, implies too little concentration at the upper
tail of the port share distribution.

8 The effects of changing port technologies

This section illustrates how our calibrated model can be used to assess the aggregate and dis-
tributional effects of changing transshipment technologies in ports. To this end, we consider
a counterfactual in which we increase the intercept parameter of the endogenous transship-
ment cost function, κ; and decrease the shape parameter of the endogenous transshipment
cost function, β. Increasing the intercept parameter implies a uniform increase in transship-
ment costs, corresponding to the lower overall efficiency of old transshipment technologies.39

Decreasing the shape parameter β implies that the extensive use of land can lower transship-
ment costs to a lesser extent, corresponding to the lower land intensity of old transshipment
technologies.

As our aim for now is to illustrate the effects of changing transshipment technologies
rather than the estimate the full effect of new port technologies, we change the two pa-
rameters of the endogenous transshipment function in a very simple way. In particular, we
increase the intercept parameter by 10 percentage points and decrease the shape parameter
by 50 percentage points. This leads to a realistic increase in aggregate shipping by 92.6%
from the counterfactual to the baseline.40 The Theory appendix describes the details of how
we perform the counterfactual simulation.

Table 10 summarizes the aggregate results of our counterfactual exercise. The last column
of the table shows counterfactual values of variables subtracted from their baseline values.
These should be compared to changes after the advent of new technologies in the data. Our
counterfactual features a higher correlation between population and shipping (0.549) than
the baseline (0.472), similar to the declining correlation we document in the data (Section 3).
In other words, our counterfactual exercise can replicate the motivating empirical fact doc-
umented in this paper: the reallocation of shipping from larger to smaller cities. Moreover,

39Recall that we take our model to 1990 data. Hence, our baseline world is one in which the new trans-
shipment technologies are present, and we want to perform counterfactuals that mimic the lack of these new
technologies.

40As a reference point, the value of merchandise trade increased sixfold between 1950 and 1990 at constant
prices. We have experimented with both smaller and larger changes in these parameters, and the effects
seem monotonic. This suggests that there is nothing qualitatively special about the counterfactual we chose
as our benchmark.
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the relationship between port share and population becomes flatter in the counterfactual
(a regression coefficient of -0.0052) than in the baseline (a coefficient of -0.0117), consistent
with large cities becoming less specialized in port activities after the arrival of new port
technologies.41

Aggregate world welfare increases by 5.3% from the counterfactual to the baseline, while
aggregate real GDP increases by 5.7%. Estimates of the real GDP gains from trade tend to
be substantially below these numbers in one-sector quantitative trade models. For example,
Costinot and Rodríguez-Clare (2014) estimate a 2.28% effect of a 40% worldwide tariff
(which, under their calibrated value of the trade elasticity, should correspond to a 200%
change in trade), as well as a 4.4% effect of eliminating trade completely. These are much
more dramatic changes in trade than the 92.6% increase in our counterfactual. A direct
comparison of these numbers to our real GDP gains is not straightforward since standard
quantitative models do not feature within-country geography. Keeping this caveat in mind,
one interpretation of these results is that the larger effects that we find are due to the
reallocation of economic activity caused by the arrival of new port technologies. Endogenous
port infrastructure development has the potential to alter the size of the gains from trade if
the costs are heterogeneous across locations, as is the case in our setting. This is due to the
fact that as ports reallocate from large, high rent, productive cities, to smaller, lower rent
and less productive cities, there is increased specialization based on comparative advantage.
Larger cities specialize to a greater extent in their comparative advantage sector, non-port
activities. Of course, if the spatial heterogeneity in costs plays a significant role in our welfare
effects, we should find not only high aggregate gains but also large heterogeneity in the net
gains across locations.

Hence, we look at heterogeneity in welfare gains implied by the model. As mobility is pos-
sible within countries, welfare equalizes within each country both in the baseline and in the
counterfactual. Yet, welfare gains vary across countries. Figure 12 presents the distribution
of these gains. As is apparent from the figure, the welfare effects of changes in transship-
ment technology vary dramatically across countries. Even though the majority of countries
gain below 10%, some gain more than 40%. This heterogeneity substantially exceeds the
heterogeneity across countries found by Costinot and Rodríguez-Clare (2014), who estimate
that the welfare effects of eliminating trade completely vary between 1.5% and 8.1% in a

41Recall that the relationship is negative both in the baseline model and in the data. Contrary to what
we find in the data, the relationship between port size and population is not positive in the counterfactual.
This is unsurprising, as the counterfactual simulation still features a crowding out effect that is especially
strong in large cities, albeit to a smaller extent than in the baseline.
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standard one-sector quantitative model. The large cross-country heterogeneity we find lends
additional support to the claim that our estimated aggregate benefits include efficiency gains
that were induced by a reallocation of economic activity, which was triggered by heteroge-
neous local costs of infrastructure development. Hence, accounting for endogenous costs in
port development seems to be an important margin for understanding the gains from trade
and how they are distributed spatially.

9 Conclusion

TBA
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A Tables

Table 1: Comparison of sample of port cities and sample of cities with population (Geopolis)

No port Port Total
No population information 0 1,592 1,592
Population information 2,083 553 2,636
Total 2,083 2,145 4,228

Table 2: Weakening correlation between population and shipping from 1960s

(1) (2) (3) (4)
depvar ln(shipment) ln(shipment) ln(shipment) ln(shipment)

ln(pop)*1950 0.997*** 1.330*** -0.064 -0.057
(0.087) (0.098) (0.068) (0.076)

ln(pop)*1960 1.061*** 1.386***
(0.080) (0.095)

ln(population) 1.061*** 1.386***
(0.080) (0.095)

ln(pop)*1970 1.022*** 1.207*** -0.039 -0.179**
(0.080) (0.095) (0.068) (0.079)

ln(pop)*1980 0.981*** 1.187*** -0.080 -0.199**
(0.078) (0.093) (0.079) (0.085)

ln(pop)*1990 0.860*** 1.015*** -0.200** -0.372***
(0.070) (0.086) (0.087) (0.094)

Observations 2,610 2,610 2,610 2,610
R-squared 0.203 0.541 0.203 0.541
Fixed Effect year country X year year country X year

Notes: Dependent variable: log of shipping flows at the level of the city. Regressor:
log of population at the level of the city interacted by a decade dummy as indi-
cated. Sample: port cities. Standard errors clustered at the city level. Notation for
statistical significance: *** p<0.01, ** p<0.05, * p<0.1.
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Table 3: Causal effect of new port technologies on shipping

(1) (2) (3)
VARIABLES ln(shipment) ln(shipment) ln(shipment)

Depth Measure X 1960 -0.010
(0.045)

Depth Measure X 1970 0.225***
(0.049)

Depth Measure X 1980 0.157***
(0.058)

Depth Measure X 1990 0.236***
(0.065)

Depth Measure X (>=1970) 0.211*** 0.245***
(0.041) (0.055)

Depth Measure X (>=1970) X Quartile 2 -0.049
(0.064)

Depth Measure X (>=1970) X Quartile 3 0.004
(0.069)

Depth Measure X (>=1970) X Quartile 4 -0.117*
(0.061)

Observations 2,640 2,640 2,640
R-squared 0.130 0.129 0.132
Number of cityid 528 528 528

Notes: Dependent variable: log of shipping flows at the level of the city. Regressor: port
suitability measured at the level of the city interacted by a decade dummy as indicated.
“Quartile” indicates an interaction with a binary variable that takes the value of 1 if the
city’s population in 1950 belongs to the specified quartile. Excluded category is quartile 1
(smallest). Sample: port cities. Standard errors clustered at the city level. Notation for
statistical significance: *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: Correlation between share of a city occupied by the port and its population, over
time

DEP VAR: (1) (2) (3) (4)
port area/city area

population 0.0074**
(0.0031)

population * (year = 1950) 0.0074**
(0.0031)

population * (year = 1960) 0.0035* -0.0039*
(0.0019) (0.0023)

population * (year = 1970) 0.0003 -0.0070**
(0.0004) (0.0028)

population * (year = 1980) -0.0002 -0.0075**
(0.0001) (0.0031)

population * (year = 1990) -0.0003** -0.0076**
(0.0001) (0.0031)

ln(population) 0.0050***
(0.0016)

ln(population) * (year = 1950) 0.0050***
(0.0016)

ln(population) * (year = 1960) 0.0041*** -0.0008
(0.0014) (0.0006)

ln(population) * (year = 1970) 0.0026** -0.0024**
(0.0010) (0.0010)

ln(population) * (year = 1980) 0.0007 -0.0043***
(0.0007) (0.0015)

ln(population) * (year = 1990) -0.0003 -0.0053***
(0.0007) (0.0016)

Observations 1,594 1,594 1,594 1,594
R-squared 0.0218 0.0218 0.0338 0.0338
Year FE yes yes yes yes

Notes: Dependent variable: share of land occupied by the port. Regressor: log of
population / population at the level of the city interacted by a decade dummy as
indicated. Sample: port cities where port area measures are available. Standard
errors clustered at the city level. Notation for statistical significance: *** p<0.01,
** p<0.05, * p<0.1.

41



Table 5: Causal effect of shipping activity on population

(1) (2) (3) (4) (5) (6)
depvar ln(pop) ln(pop) ln(shipment) ln(pop) ln(shipment) ln(pop)

ln(shipment) 0.020*** 0.140***
(0.007) (0.051)

Depth Measure X (>= 1970) 0.217*** 0.030***
(0.041) (0.010)

Depth Measure X 1960 -0.006 0.007
(0.046) (0.006)

Depth Measure X 1970 0.233*** 0.027***
(0.049) (0.009)

Depth Measure X 1980 0.164*** 0.032**
(0.059) (0.013)

Depth Measure X 1990 0.246*** 0.042**
(0.065) (0.016)

Observations 2,609 2,609 2,609 2,609 2,609 2,609
R-squared 0.627 0.505 0.123 0.626 0.125 0.627
Number of cities 527 527 527 527 527 527
year FE yes yes yes yes yes yes
port FE yes yes yes yes yes yes
Type OLS 2SLS FS RF FS dynamic RF dynamic
KP F-stat 27.85

Notes: Dependent variable: log of shipping flows / population at the level of the city, as indicated. Regressor:
log of shipping flows at the level of the city, “Depth Measure” indicates the port suitability measure interacted
with decade dummy or indicator for decades including and after 1970, as indicated. Standard errors clustered at
the city level. Notation for statistical significance: *** p<0.01, ** p<0.05, * p<0.1.
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Table 6: Estimated causal effect of shipping on population of port city and nearby cities
controlling for continent by year non-parametric time trends

Panel A: 2SLS estimates

(1) (2) (3) (4) (5) (6) (7)
depvar ln(pop) ln(pop) ln(pop) ln(pop) ln(pop) ln(pop) ln(pop)

ln(shipment) 0.062 0.086** 0.106** 0.140** 0.126** 0.057 0.023
(0.039) (0.036) (0.042) (0.057) (0.059) (0.068) (0.058)

Observations 2,609 2,704 2,934 2,580 2,254 1,851 1,624
R-squared 0.731 0.633 0.591 0.522 0.593 0.742 0.794
Number of cities 527 547 596 524 460 381 336
sample port city 0 - 100 25 - 125 50 - 150 75 - 175 100 - 200 125 - 225
KP 24.46 28.36 22.65 15.37 15.98 8.670 12.69

Panel B: Dynamic first stage

(1) (2) (3) (4) (5) (6) (7)
depvar ln(shipment) ln(shipment) ln(shipment) ln(shipment) ln(shipment) ln(shipment) ln(shipment)

Depth Measure X 1960 -0.010 -0.062 -0.090 -0.073 -0.019 -0.085 -0.104*
(0.048) (0.058) (0.057) (0.059) (0.059) (0.059) (0.062)

Depth Measure X 1970 0.224*** 0.248*** 0.233*** 0.221*** 0.216*** 0.088 0.086
(0.052) (0.068) (0.064) (0.067) (0.064) (0.068) (0.070)

Depth Measure X 1980 0.142** 0.184** 0.103 0.087 0.107 0.073 0.149**
(0.058) (0.076) (0.071) (0.075) (0.070) (0.073) (0.076)

Depth Measure X 1990 0.221*** 0.392*** 0.289*** 0.237*** 0.254*** 0.182** 0.203***
(0.062) (0.081) (0.075) (0.077) (0.070) (0.073) (0.076)

Observations 2,609 2,704 2,934 2,580 2,254 1,851 1,624
R-squared 0.168 0.177 0.192 0.194 0.204 0.221 0.232
Number of cities 527 547 596 524 460 381 336
sample port city 0 - 100 25 - 125 50 - 150 75 - 175 100 - 200 125 - 225

Panel C: Dynamic reduced form

(1) (2) (3) (4) (5) (6) (7)
depvar ln(pop) ln(pop) ln(pop) ln(pop) ln(pop) ln(pop) ln(pop)

Depth Measure X 1960 0.006 0.010 0.009 0.010 0.006 0.005 0.006
(0.005) (0.007) (0.006) (0.007) (0.007) (0.008) (0.008)

Depth Measure X 1970 0.019** 0.030*** 0.031*** 0.035*** 0.034*** 0.021* 0.020
(0.008) (0.010) (0.009) (0.010) (0.011) (0.012) (0.013)

Depth Measure X 1980 0.013 0.028** 0.029** 0.031** 0.019 -0.002 -0.006
(0.010) (0.012) (0.012) (0.012) (0.013) (0.014) (0.015)

Depth Measure X 1990 0.014 0.035** 0.035** 0.041*** 0.033** 0.015 0.008
(0.012) (0.015) (0.014) (0.014) (0.015) (0.016) (0.017)

Observations 2,609 2,704 2,934 2,580 2,254 1,851 1,624
R-squared 0.749 0.744 0.743 0.766 0.763 0.779 0.801
Number of cities 527 547 596 524 460 381 336
sample port city 0 - 100 25 - 125 50 - 150 75 - 175 100 - 200 125 - 225

Notes: Dependent variable: log of shipping flows / population at the level of the city, as indicated. Regressor: log of shipping flows
at the level of the city, “Depth Measure” indicates the port suitability measure interacted with decade dummy, as indicated. Sample:
port city indicates the baseline port city sample, 0-100 indicates the sample of cities 0-100km away from the nearest port (excludes
port cities), 25-125 indicates the sample of cities 25-125 away from the nearest port and so forth. Standard errors clustered at the city
level. Notation for statistical significance: *** p<0.01, ** p<0.05, * p<0.1.
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Table 7: Calibration of structural parameters

Parameter Target
α = 0.06 Agglomeration externalities (Ciccone and Hall, 1993)
γ = 0.84 Non-land share in production (Desmet and Rappaport, 2017)
η = 0.15 Migration elasticity (Kennan and Walker, 2011)
σ = 4 Trade elasticity (Simonovska and Waugh, 2014)
θ = 203 Idiosyncratic shipping cost dispersion (Allen and Arkolakis, 2019)
λ = 0.074 Congestion externalities in ports (Abe and Wilson, 2009)

Table 8: Model-based specification
(1) (2) (3) (4) (5) (6) (7)

depvar ln(pop) ln(pop) ln(pop) ln(pop) ln(shipment) ln(market access) ln(pop)

ln(shipment) 0.023*** 0.141*** 0.006 -0.251***
(0.007) (0.051) (0.008) (0.070)

ln(market access) 1.670*** 17.797***
(0.632) (2.640)

Depth Measure X 1970 0.208*** 0.005*** 0.038***
(0.041) (0.001) (0.009)

ivMA -38.972*** 1.372*** 34.214***
(10.652) (0.301) (2.443)

Observations 2,571 2,571 2,571 2,571 2,571 2,571 2,571
R-squared 0.630 0.515 0.651 -1.346 0.133 0.702 0.683
Number of cityid 519 519 519 519 519 519 519
year FE yes yes yes yes yes yes yes
port FE yes yes yes yes yes yes yes
Type OLS 2SLS OLS 2SLS FS FS RF
KP F-stat 27.96 14.27

Notes: Dependent variable: log of shipping flows / population / market access at the level of the city, as indicated.
Regressor: log of shipping flows at the level of the city, log of market access, “Depth Measure” indicates the port
suitability measure interacted with a binary indicator for decades including and after 1970, “ivMA” is the IV for market
access defined in the text. Standard errors clustered at the city level. Notation for statistical significance: *** p<0.01,
** p<0.05, * p<0.1.
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Table 9: Model fit

Panel A: Relationship between port size in the model and the data

Correlation (levels) 0.4218*
Correlation (logs) 0.5468*
Rank correlation 0.6277*
Correlation (residuals) 0.5801*

Panel B: Correlation between log port size and city-level observables

Model Data
Log shipping (targeted moment) 0.6060 0.6024
Log population -0.1445 -0.0541
Log GDP -0.2511 -0.0001

Table 10: Counterfactual results

Variable Counterfactual Baseline Difference
Aggregate shipping 9,527,571 18,345,820 92.6%
Correlation of log population and log shipping 0.549 0.472 -0.077
Aggregate world welfare 21,165 22,281 5.3%
Aggregate world real GDP 429,018 453,682 5.7%
Coefficient of population on port share (millions) -0.0052 -0.0117 -0.0065
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B Figures

Figure 1: Port wharf lengths over time, across ports. Source: Ports of the World, 1955-1990
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Figure 2: Port and non-port cities from Geopolis
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Figure 3: Shipping network in 1951 and 1990

Figure 4: Dynamic effects on shipping, by initial population quartile
Notes: Estimated coefficients from a regression of the log of shipping flows at the city level on decade

dummies interacted with the full set of initial size quartiles. Size quartiles defined based on population in
1950.
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(a) Los Angeles (b) Buenos Aires

Figure 5: Anchored cargo vessels, March 2019. Source: marinetraffic.com.
Note: Figures not on same scale

(a) Los Angeles (b) Buenos Aires

Figure 6: Elevation data (meters). Source: GEBCO
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Figure 7: Variation in exogenous port suitability
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Figure 8: Shipping responds differentially to port suitability by land supply elasticity
Notes: Marginal effects from a regression of log shipping flows at the city level on port suitability

interacted with a binary indicator that takes the value of 1 in decades including and after 1970 and the
interaction of this measure with the Saiz land supply elasticity. Marginal effect of port suitability by land

supply elasticity (low values = low land supply elasticity).
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(a) 1950 (b) 1960

(c) 1970 (d) 1980

(e) 1990

Figure 9: Correlation between port area and population, 1950-1990 (binscatter)
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Figure 10: Estimated causal effect of shipping on population of port city and nearby cities
(controlling for continent by year non-parametric time trends)

Notes: Refer to Table 6 for details on the estimation.

Figure 11: Lorenz curves of port shares in the model (blue) and in the data (red)
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Figure 12: Change in country welfare between the counterfactual and the baseline

54



C Theory appendix
The primary aim of this appendix is to provide the derivation of the model’s equilibrium
conditions used in Section 4.2. Section C.1 derives workers’ optimal location choices. Section
C.2 solves the landlords’ problem for the optimal allocation of land between production and
transshipment. Section C.3 solves the firms’ problem, while Section C.4 uses optimal prices,
the price index and market clearing to obtain the equations characterizing the equilibrium
distribution of wages and population. Section C.5 derives the value of shipments flowing
through any port in equilibrium. Section C.6 shows how we invert the equilibrium conditions
to back out amenities, productivities and exogenous port costs as a function of observed
population, wages and the value of shipments. Finally, Section C.7 describes how we simulate
the model in the counterfactual.

C.1 Workers’ optimal location choices
In the model, a worker j who is a resident of country c and chooses to live in city r obtains
utility

uj (r) =
[
S∑
s=1

qj (s, r)
σ−1
σ

] σ
σ−1

a (r) bj (r)

which implies that the indirect utility of a worker in city r equals

uj (r) = w (r)
P (r)a (r) bj (r)

where w (r) is the nominal wage and P (r) is the CES price index of consumption goods in
the city.

We assume that bj (r) is distributed Fréchet with scale parameter one and shape param-
eter 1/η:

Pr (bj (r) ≤ b) = e−b
−1/η

from which we obtain that the worker’s indirect utility is also distributed Fréchet with scale
parameter w(r)

P (r)a (r):

Pr (uj (r) ≤ u) = e−[w(r)
P (r)a(r)]1/η

u−1/η

and hence, by the properties of the Fréchet distribution, the probability with which a worker
chooses to live in city r is given by

Pr (uj (r) ≥ uj (s) ∀s 6= r) =

[
w(r)
P (r)a (r)

]1/η
∑
s∈c

[
w(s)
P (s)a (s)

]1/η .
In equilibrium, the fraction of workers choosing to live in city r coincides with this probability,
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implying
N (r)∑
s∈cN (s) =

[
w(r)
P (r)a (r)

]1/η
∑
s∈c

[
w(s)
P (s)a (s)

]1/η . (6)

C.2 Landlords’ optimal land use
Landlords earn income from providing transshipment services and from renting out land to
firms that produce the city-specific good. They maximize their utility coming from their
consumption of goods,

uL (r) =
[
S∑
s=1

qL (s, r)
σ−1
σ

] σ
σ−1

which implies that the indirect utility of the representative landlord in city r equals her
nominal income divided by the price index,

uL (r) =

[
O (r)− (ν (r) + ψ (F (r)))Shipping (r)λ

]
Shipping (r) +R (r) (1− F (r))

P (r)

where O (r) is the price of transshipment services in city r (taken as given by the landlord),
ν (r) is the exogenous part of transshipment costs, F (r) is the share of land allocated to the
port, Shipping (r) is the value of shipments flowing through the port, excluding the price
of transshipment services (hence, total demand for transshipment services, again taken as
given by the landlord), R (r) is the land rent prevailing in the city, and 1 − F (r) is the
share of land rented out to firms. That is, the first term in the numerator corresponds to
the landlord’s net nominal income from providing transshipment services, while the second
term corresponds to her nominal income from renting out land to firms.

The landlord decides on the allocation of land, captured by the single variable F (r), to
maximize her utility. As she cannot influence the price index P (r), this is equivalent to
maximizing her nominal income:

max
F (r)

[
O (r)− (ν (r) + ψ (F (r)))Shipping (r)λ

]
Shipping (r) +R (r) (1− F (r))

The first-order condition to this maximization problem is

−ψ′ (F (r))Shipping (r)1+λ −R (r) = 0

from which, by rearranging,

− ψ′ (F (r)) = R (r)
Shipping (r)1+λ . (7)
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C.3 Firms’ problem
The representative firm operating in city r faces the production function

q (r) = Ã (r)n (r)γ (1− F (r))1−γ

and maximizes its profits by choosing its labor and land use:

max
n(r),1−F (r)

p (r, r) Ã (r)n (r)γ (1− F (r))1−γ − w (r)n (r)−R (r) (1− F (r))

where p (r, r) is the factory gate price of the good produced by the firm.
The first-order conditions to this maximization problem imply

R (r) = 1− γ
γ

w (r)N (r)
1− F (r) (8)

where we have used labor market clearing, which implies n (r) = N (r). Plugging this back
into the firm’s cost function and production function, we obtain that the firm’s marginal
cost of production is equal to

γ−γ (1− γ)−(1−γ) Ã (r)−1 w (r)γ R (r)1−γ

which, by perfect competition among firms, equals the factory gate price in equilibrium:

p (r, r) = γ−1A (r)−1 (1− F (r))−(1−γ) N (r)1−γ−αw (r) (9)

where we have used (8) again, together with the fact that Ã (r) = A (r)N (r)α.
Finally, equation (8) also implies that total factor payments in city r equal

Y (r) = w (r)N (r) +R (r) (1− F (r)) = w (r)N (r) + 1− γ
γ

w (r)N (r) = 1
γ
w (r)N (r) .

(10)

C.4 Equilibrium conditions
From the workers’ and landlords’ problems, we can derive the constant-elasticity demand for
the city-r good in city s as

q (r, s) = p (r, s)−σ P (s)σ−1 Y (s)

where p (r, s) is the price paid by the consumer, which includes the shipping cost between r
and s. Demand in value terms is equal to

p (r, s) q (r, s) = p (r, r)1−σ P (s)σ−1 Y (s) E [T (r, s)]1−σ
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where we have used the fact that the price is the average iceberg cost over the factory gate
price,

p (r, s) = p (r, r) E [T (r, s)] .

Market clearing for the good produced in city r implies that total factor payments in r
equal demand for the good (in value terms) in the world economy:

1
γ
w (r)N (r) =

S∑
s=1

p (r, r)1−σ P (s)σ−1 1
γ
w (s)N (s) E [T (r, s)]

where we have used equation (10) to substitute for total factor payments on both sides.
Plugging (9) into this equation yields

w (r)N (r) =γσ−1A (r)σ−1 (1− F (r))(1−γ)(σ−1) N (r)−(1−γ−α)(σ−1) ·

w (r)1−σ
S∑
s=1

P (s)σ−1 w (s)N (s) E [T (r, s)]1−σ .
(11)

The CES price index in city r takes the form

P (r)1−σ =
S∑
s=1

p (s, r)1−σ =
S∑
s=1

p (s, s)1−σ E [T (s, r)]1−σ .

Plugging factory gate prices (9) into this equation yields

P (r)1−σ = γσ−1
S∑
s=1

A (s)σ−1 (1− F (s))(1−γ)(σ−1) w (s)1−σN (s)−(1−γ−α)(σ−1) E [T (s, r)]1−σ .

(12)
Rearranging equation (6) yields the following expression for the price index:

P (r) = ã (r)w (r)N (r)−η (13)

where ã (r) can be obtained by scaling amenities a (r) according to

ã (r) = ℵca (r) =

 ∑
s∈cN (s)∑

s∈c

[
w(s)
P (s)a (s)

]1/η

η

a (r) .

Plugging equation (13) into (11) yields

A (r)1−σ (1− F (r))−(1−γ)(σ−1) w (r)σN (r)1+(1−γ−α)(σ−1) =

γσ−1
S∑
s=1

ã (s)σ−1 w (s)σN (s)1−η(σ−1) E [T (r, s)]1−σ
(14)
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while plugging equation (13) into (12) yields

ã (r)1−σ w (r)1−σN (r)η(σ−1) = γσ−1·
S∑
s=1

A (s)σ−1 (1− F (s))(1−γ)(σ−1) w (s)1−σN (s)−(1−γ−α)(σ−1) E [T (s, r)]1−σ .
(15)

Note that our assumptions on trade costs guarantee symmetry and hence E [T (r, s)]1−σ =
E [T (s, r)]1−σ. Given this, we can show that equations (14) and (15) can be simplified further.
To see that this is the case, guess that wages take the form

w (r) = ã (r)ι1 A (r)ι2 (1− F (r))ι3 N (r)ι4 .

That is, they only depend on local amenities, productivity, land available for production,
and population. Inspecting equations (14) and (15), one can verify that this guess is indeed
correct if

ι1 = − σ − 1
2σ − 1 ι2 = ι3 = (1− γ) σ − 1

2σ − 1 ι4 = [η − (1− γ) (1− α) (σ − 1)− 1] 1
2σ − 1

as (14) and (15) reduce to the same equation if the guess is correct with these values of ι1,
ι2, ι3 and ι4. Thus, wages in city r are given by

w (r) = ã (r)−
σ−1

2σ−1 A (r)
σ−1

2σ−1 (1− F (r))(1−γ) σ−1
2σ−1 N (r)[η−(1−γ−α)(σ−1)−1] 1

2σ−1 .42 (16)

Finally, plugging (16) back into either (14) or (15) gives us an equation that determines the
distribution of population across cities:

N (r)[1+ησ+(1−γ−α)(σ−1)] σ−1
2σ−1 = γσ−1ã (r)

σ(σ−1)
2σ−1 A (r)

(σ−1)2
2σ−1 (1− F (r))(1−γ) (σ−1)2

2σ−1 MA (r) (17)

where

MA (r) =
S∑
s=1

ã (s)
(σ−1)2
2σ−1 A (s)

σ(σ−1)
2σ−1 (1− F (s))(1−γ)σ(σ−1)

2σ−1 N (s)[1−η(σ−1)−(1−γ−α)σ] σ−1
2σ−1

E [T (r, s)]σ−1

is the market access of city r.

C.5 Equilibrium shipping flows
This section derives the equilibrium value of shipping flows through any port. To obtain
these, we first need to introduce further notation. Let Z be an S + P by S + P matrix,
where P is the number of ports in the model.43 Each of the first S rows and columns of Z

42We can freely choose the intercept of this equation as we have not normalized any price yet. We choose
it to be equal to one.

43Recall that S is the total number of (port or inland) cities.
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corresponds to a city, while each of the last P rows and columns of Z corresponds to a port.
Let us call a city or a port a location; that is, each row and column in Z corresponds to one
location. We assume that an entry z (i, `) of Z is zero if locations i and ` are not directly
connected, or if i = `. Otherwise, z (i, `) is defined as

z (i, `) =
[
T̄ (i, `) [1 +O (`)]

]−θ
where T̄ (i, `) is the common cost of shipping from i to ` directly, and O (`) is the port cost
at `. If ` is not a port but a (port or inland) city, then we define O (`) = 0.

Following Allen and Arkolakis (2019), we can show that the expected cost of shipping
from city r to s can be written as

E [T (r, s)] = Γ
(
θ + 1
θ

)
x (r, s)−1/θ

where x (r, s) is the (r, s) entry of the matrix

X = (I − Z)−1

and I is the S + P by S + P identity matrix.
Similarly, we can show that, if a good is shipped from city r to s, the probability that it

is shipped through port k is given by

π (k|r, s) = x (r, k)x (k, s)
x (r, s) (18)

and the probability that it is shipped through the direct link between ports k and m is

π (k,m|r, s) =
x (r, k)

[
T̄ (k,m) [1 +O (m)]

]−θ
x (m, s)

x (r, s) . (19)

The total value of goods shipped through port k from city r to city s (excluding the price
paid for transshipment services at k) equals

Shipping (k|r, s) = [1 +O (k)]−1 p (r, s)1−σ P (s)σ−1 1
γ
w (s)N (s) π (k|r, s) .

Combining this with p (r, s) = p (r, r) E [T (r, s)] as well as equations (9), (13) and (18),
yields

Shipping (k|r, s) = γσ−2 [1 +O (k)]−1 A (r)σ−1 (1− F (r))(1−γ)(σ−1) N (r)−(1−α−γ)(σ−1) ·

w (r)1−σ ã (s)σ−1 N (s)1−η(σ−1) w (s)σ E [T (r, s)]1−σ x (r, k)x (k, s)
x (r, s)
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and therefore the total value of shipping through port k is given by

Shipping (k) = γσ−2 [1 +O (k)]−1∑
r

D1 (r)x (r, k)
∑
s

D2 (s) E [T (r, s)]1−σ

x (r, s) x (k, s) (20)

where
D1 (r) = A (r)σ−1 (1− F (r))(1−γ)(σ−1) N (r)−(1−α−γ)(σ−1) w (r)1−σ

and
D2 (s) = ã (s)σ−1 N (s)1−η(σ−1) w (s)σ .

C.6 Inverting the model
This section describes how we invert the equilibrium conditions of the model to back out
amenities, productivities and exogenous port costs as a function of observed population,
wages and the value of shipments. As a first step, we use the observed data to back out port
shares in the model. To this end, we combine equations (7) and (8) to obtain port shares as
a function of wages w (r), population N (r) and the value of shipments Shipping (r) in each
port city r:

− ψ′ (F (r)) (1− F (r)) = 1− γ
γ

w (r)N (r)
Shipping (r)1+λ (21)

Given the assumptions we made on ψ′, the left-hand side of equation (21) is strictly decreasing
in F (r). Moreover, the left-hand side takes every real value between zero and infinity as
ψ′ is continuous, limF→1 ψ

′ (F ) = 0 and limF→0 ψ
′ (F ) = −∞. This guarantees that solving

equation (21) identifies a unique value of F (r) ∈ (0, 1) for every port city.
The second step consists of solving for ã (r), A (r) and ν (r) for the observed N (r), w (r)

and Shipping (r), as well as the F (r) recovered in the previous step. This is done using an
algorithm that consists of an outer loop and an inner loop. In the inner loop, we obtain the
values of ã (r) that solve the system of equations

ã (r)1−σ w (r)1−σN (r)η(σ−1) = γσ−1
S∑
s=1

ã (s)σ−1 w (s)σN (s)1−η(σ−1) E [T (r, s)]1−σ

derived from equations (14) and (15) for a fixed set of exogenous transshipment costs ν (r),
and hence for fixed E [T (r, s)]. For any E [T (r, s)], this system yields a unique solution
for ã (r). Rearranging equation (16), we can then uniquely express productivity A (r) as a
function of the recovered ã (r):

A (r) = ã (r) (1− F (r))γ−1 w (r)
2σ−1
σ−1 N (r)−[η−(1−γ−α)(σ−1)−1] 1

σ−1

In the outer loop, we search for the set of ν (r) for which the value of shipments implied by
equation (20) – hence, byN (r), w (r), F (r) and the recovered ã (r) andA (r) – rationalize the
shipping flows observed in the data. In practice, we start from a uniform guess of ν (r) = ν̄,
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then perform a large number of iterations in which we update ν (r) gradually to get closer
to satisfying equation (20). We also update E [T (r, s)] in every iteration step. Even though
we cannot prove that this procedure identifies a unique set of ν (r), the algorithm has been
converging to the same fixed point for various different initial guesses on ν (r), even when
guessing non-uniform distributions of ν (r) initially.

C.7 Counterfactual simulation
This section describes how we perform counterfactual simulations with the model. First,
we need to choose the absolute level of amenities a (r) in each city r, as the inversion only
identifies amenities up to a country-level scale, ã (r) = ℵca (r). Unfortunately, nothing in
the data guides us with this choice. Hence, we make the simplest possible assumption by
assuming that average amenities are the same across countries and are equal to one:

1
Cc

∑
r∈c

a (r) = 1
Cc

∑
r∈c

ã (r)
ℵc

= 1

where Cc denotes the number of cities in country c. Rearranging yields

ℵc = 1
Cc

∑
r∈c

ã (r)

and hence we can obtain the absolute level of amenities in each city r as

a (r) = ã (r)
ℵc

= Cc∑
s∈c ã (s) ã (r) .

Second, we solve for the counterfactual equilibrium of the model using an algorithm
that consists of three loops embedded in each other. In the innermost loop, we obtain the
distribution of population N (r) that solves equation (17) for a fixed set of ℵc, F (r) and
Shipping (r) (implying that E [T (r, s)] are also fixed). For any ℵc, F (r) and Shipping (r),
equation (17) can be shown to have a unique positive solution if

α < 1− γ + η

which holds under the values of structural parameters chosen in the calibration. Moreover,
the solution can be obtained by simply iterating on equation (17), starting from any initial
guess on N (r). The proof of these results follows directly from the proof of equilibrium
uniqueness in Allen and Arkolakis (2014).

In the middle loop, we solve for the set of country-specific ℵc that guarantee that the
sum of city populations equals total country population in each country:∑

r∈c
N (r) = Nc

62



where Nc denotes the exogenously given population of country c. We also solve for wages
using equation (16) and for rents using equation (8).

In the outermost loop, we iterate on the distribution of port shares and shipping flows
that satisfy both equations (7) and (20), also updating E [T (r, s)] in every step. We use
the distributions of port share and shipping obtained in the inversion as our initial guesses.
Even though we cannot prove that this procedure yields a unique equilibrium, we have been
converging to the same distribution of endogenous variables for different initial guesses as
well.
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D Online Appendix: Figures

(a) Sample: ports with observed port length (b) Sample: 14 ports with observed total port
area

Figure 13: Relationship between port area and population, 1990
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Figure 14: Estimated causal effect of shipping on population of port city and nearby cities

Figure 15: Reduced form effect of shipping on economic activity: Robustness to dropping
continents one at a time
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(a) Reduced form (b) First stage

Figure 16: Reduced form effect of shipping on economic activity: Identifying variation in
long difference (1960-1990)
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E Online Appendix: Tables

Table 11: Weakening correlation between population and shipping from 1960s — robustness

Dep var: ln(shipment) (1) (2) (3) (4)
Definition incl. non-WPI incl. non-WPI incl. close incl. close
of shipment: ports ports ports ports

ln(pop)*1950 -0.075 -0.075 -0.069 -0.034
(0.068) (0.076) (0.067) (0.077)

ln(pop) 1.070*** 1.406*** 1.105*** 1.393***
(0.079) (0.094) (0.077) (0.094)

ln(pop)*1970 -0.017 -0.154** -0.018 -0.124*
(0.067) (0.078) (0.065) (0.074)

ln(pop)*1980 -0.007 -0.126 -0.023 -0.099
(0.080) (0.085) (0.074) (0.084)

ln(pop)*1990 -0.144 -0.308*** -0.152* -0.284***
(0.088) (0.095) (0.084) (0.093)

Observations 2,684 2,684 2,684 2,684
R-squared 0.200 0.533 0.226 0.563
FE year ctryyr year ctryyr

Notes: Dependent variable in columns (1) and (2): log of shipping flows at the level of
the city, including shipping flows from ports that do not appear in World Port Index.
Dependent variable in columns (3) and (4): log of shipping flows at the level of the
city, including shipping flows from ports that do not appear in World Port Index, and
including shipping flows from nearby ports that are not cities themselves, and mainly
serving the port city. Regressor:log of population at the level of the city interacted
by a decade dummy as indicated. Statistical significance: *** p<0.01, ** p<0.05, *
p<0.1.

Table 12: Predictive power of port suitability for shipping
(1) (2) (3) (4) (5) (6) (7) (8) (9)

depvar ln(shipment) ln(shipment) ln(shipment) ln(shipment) ln(shipment) ln(shipment) ln(shipment) ln(shipment) ln(shipment)

Depth Measure X (>= 1970) 1.079*** 0.089 0.199*** 0.262*** 0.217*** 0.208*** 0.172*** 0.143*** 0.094*
(0.216) (0.130) (0.069) (0.057) (0.041) (0.042) (0.045) (0.044) (0.049)

Observations 2,609 2,609 2,609 2,609 2,609 2,609 2,609 2,609 2,609
R-squared 0.124 0.109 0.115 0.123 0.123 0.121 0.117 0.114 0.111
Number of cityid 527 527 527 527 527 527 527 527 527
year FE yes yes yes yes yes yes yes yes yes
port FE yes yes yes yes yes yes yes yes yes
Type FS FS FS FS FS FS FS FS FS
Suitability measure share buffer 0-1km buffer 1-3km buffer 3-5km buffer 5-10km buffer 10-15km buffer 15-20km buffer 20-25km buffer 25-30km

Notes: Standard errors clustered at the city level. Notation for statistical significance: *** p<0.01, ** p<0.05, * p<0.1.
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Table 13: Estimated causal effect of shipping on population of port city: robustness to the
inclusion of non-parametric time trends

(1) (2) (3) (4)
depvar lnpop lnpop lnpop lnpop

ln(shipment) 0.140*** 0.062 0.078* 0.189***
(0.051) (0.039) (0.045) (0.069)

Observations 2,609 2,609 2,609 2,609
R-squared 0.505 0.732 0.662 0.428
Number of cityid 527 527 527 527
year FE yes yes yes yes
port FE yes yes yes yes
Type 2SLS 2SLS 2SLS 2SLS
FE year continentXyear sizeXyear oceanXyear
KP 27.85 24.48 25.96 19.28

Notes: Standard errors clustered at the city level. Notation for statistical
significance: *** p<0.01, ** p<0.05, * p<0.1.

Table 14: Estimated causal effect of shipping on population of port city: long difference
(1960-1990)

(1) (2) (3) (4)
depvar dln(population) dln(population) dln(shipment) dln(population)

dln(shipment) 0.027** 0.141**
(0.012) (0.060)

Depth Measure X (>= 1970) 0.251*** 0.035**
(0.059) (0.014)

Observations 520 520 520 520
R-squared 0.012 -0.212 0.027 0.009
Type OLS 2SLS FS RF
KP 18.03

Notes: Standard errors clustered at the city level. Notation for statistical significance: *** p<0.01, **
p<0.05, * p<0.1.
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Table 15: Estimated causal effect of shipping on population of port city and nearby cities

Panel A: 2SLS estimates

(1) (2) (3) (4) (5) (6) (7)
VARIABLES lngeop_pop lngeop_pop lngeop_pop lngeop_pop lngeop_pop lngeop_pop lngeop_pop

ln(shipment) 0.140*** 0.158*** 0.192*** 0.224*** 0.231*** 0.274** 0.272***
(0.052) (0.046) (0.055) (0.067) (0.067) (0.112) (0.104)

Observations 2,609 2,704 2,934 2,580 2,254 1,851 1,624
R-squared 0.504 0.234 0.112 -0.007 0.076 -0.056 -0.016
Number of geopolis_id 527 547 596 524 460 381 336
sample portcity 0 - 100 25 - 125 50 - 150 75 - 175 100 - 200 125 - 225
KP 27.82 32.96 27.08 21.66 21.76 9.774 11.86

Panel B: Dynamic first stage

(1) (2) (3) (4) (5) (6) (7)
VARIABLES ln(shipment) ln(shipment) ln(shipment) ln(shipment) ln(shipment) ln(shipment) ln(shipment)

ivX1960 -0.007 -0.038 -0.072 -0.063 -0.017 -0.095 -0.150**
(0.046) (0.055) (0.052) (0.055) (0.057) (0.059) (0.063)

ivX1970 0.232*** 0.273*** 0.251*** 0.250*** 0.250*** 0.105 0.063
(0.049) (0.063) (0.060) (0.064) (0.062) (0.068) (0.068)

ivX1980 0.163*** 0.192** 0.118* 0.125* 0.140* 0.067 0.086
(0.059) (0.075) (0.071) (0.075) (0.073) (0.073) (0.076)

ivX1990 0.246*** 0.451*** 0.356*** 0.314*** 0.315*** 0.196** 0.186**
(0.065) (0.082) (0.077) (0.079) (0.076) (0.077) (0.081)

Observations 2,609 2,704 2,934 2,580 2,254 1,851 1,624
R-squared 0.125 0.123 0.130 0.133 0.138 0.159 0.158
Number of geopolis_id 527 547 596 524 460 381 336
sample portcity 0 - 100 25 - 125 50 - 150 75 - 175 100 - 200 125 - 225

Panel C: Dynamic reduced form

(1) (2) (3) (4) (5) (6) (7)
VARIABLES lngeop_pop lngeop_pop lngeop_pop lngeop_pop lngeop_pop lngeop_pop lngeop_pop

ivX1960 0.007 0.018*** 0.017*** 0.019*** 0.016** 0.015** 0.020**
(0.006) (0.006) (0.006) (0.006) (0.006) (0.007) (0.008)

ivX1970 0.027*** 0.046*** 0.047*** 0.051*** 0.051*** 0.044*** 0.050***
(0.009) (0.010) (0.009) (0.011) (0.011) (0.013) (0.014)

ivX1980 0.032** 0.058*** 0.061*** 0.065*** 0.058*** 0.046*** 0.054***
(0.013) (0.014) (0.013) (0.014) (0.014) (0.016) (0.017)

ivX1990 0.042** 0.077*** 0.079*** 0.088*** 0.083*** 0.074*** 0.080***
(0.016) (0.017) (0.016) (0.017) (0.017) (0.019) (0.021)

Observations 2,609 2,704 2,934 2,580 2,254 1,851 1,624
R-squared 0.627 0.648 0.658 0.678 0.690 0.693 0.707
Number of geopolis_id 527 547 596 524 460 381 336
sample portcity 0 - 100 25 - 125 50 - 150 75 - 175 100 - 200 125 - 225

Notes: Standard errors clustered at the city level. Notation for statistical significance: *** p<0.01, ** p<0.05, * p<0.1.
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Table 16: Model-based specification: robustness to the inclusion of non-parametric time
trends

(1) (2) (3) (4)
depvar ln(pop) ln(pop) ln(pop) ln(pop)

ln(shipment) -0.251*** -0.223*** -0.261*** -0.314***
(0.070) (0.056) (0.091) (0.084)

ln(market access) 17.797*** 14.291*** 17.204*** 24.954***
(2.640) (2.195) (6.076) (6.294)

Observations 2,571 2,571 2,571 2,571
Number of cityid 519 519 519 519
year FE yes yes yes yes
port FE yes yes yes yes
Type 2SLS 2SLS 2SLS 2SLS
FE year sizemyr continentyr oceanyr
KP 14.27 13.19 4.035 5.943

Notes: Standard errors clustered at the city level. Notation for statistical
significance: *** p<0.01, ** p<0.05, * p<0.1.

Table 17: Model-based specification: robustness to dropping cities close to the port city in
the market access IV

(1) (2) (3) (4) (5) (6)
depvar ln(pop) ln(pop) ln(pop) ln(pop) ln(pop) ln(pop)

ln(shipment) -0.251*** -0.232*** -0.215*** -0.198*** -0.177** -0.096
(0.070) (0.068) (0.067) (0.068) (0.070) (0.069)

ln(market access) 17.797*** 16.906*** 16.154*** 15.391*** 14.434*** 10.758***
(2.640) (2.416) (2.199) (1.989) (1.763) (1.381)

Observations 2,571 2,571 2,571 2,571 2,571 2,571
R-squared -1.346 -1.124 -0.947 -0.778 -0.579 0.038
Number of cityid 519 519 519 519 519 519
year FE yes yes yes yes yes yes
port FE yes yes yes yes yes yes
Type 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS
FE year year year year year year
Drop cities in market access IV none ≤ 100 ≤ 200 ≤ 300 ≤ 500 ≤ 1000
KP 14.27 14.79 15.52 15.99 16.09 12.26

Notes: Standard errors clustered at the city level. Notation for statistical significance: *** p<0.01, ** p<0.05,
* p<0.1.
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