Global Imbalances, Labor Market Reforms and Precautionary Savings†

Brigitte Hochmuth1, Stéphane Moyen2, and Nikolai Stähler2

1Friedrich-Alexander University of Erlangen-Nürnberg (FAU)
2Deutsche Bundesbank, Frankfurt, Germany

October 19, 2018

Abstract

How do labor market reforms affect international competitiveness and net foreign assets? To answer this question, we build a two-region RBC model with labor market frictions, idiosyncratic consumption risk and limited cross-sectional heterogeneity to establish a direct link between labor market reforms and changes in net foreign assets via a precautionary savings channel. We apply the model to simulate far-reaching labor market reforms in Germany during the mid 2000s. We find that reducing the generosity of unemployment benefits decreases wages, fosters employment and augments competitiveness as well as trade. In addition, we can explain a significant share of the observed increase in German net foreign assets. A standard representative agent framework is not able to generate any notable effects on net foreign assets and the current account.

JEL classification: E21, E24, F16, F41.

Keywords: Unemployment benefits reform, current account imbalances, precautionary savings, Hartz reform

† We thank Mathias Hoffmann, Jochen Mankart, Christian Merkl, Kurt Mitman, Felix Schröter, Vincent Sterk, Lukas Vogel, Werner Roeger, seminar participants at the university of Nürnberg, the Deutsche Bundesbank and the European Commission for valuable comments. We are grateful for feedback at the following conferences: CEF 2018 (Milan), ICMAIF 2018 (Crete), IIPF 2018 (Tampere), T2M 2018 (Paris) and Verein für Socialpolitik 2018 (Freiburg). We would like to thank Xavier Ragot and Dimitrios Tsomocos for insightful discussions of our paper. Brigitte Hochmuth acknowledges the hospitality of the Deutsche Bundesbank during the writing of this paper. The paper represents the authors’ personal opinions and does not necessarily reflect the views of the Deutsche Bundesbank or of its staff.

∗ Corresponding author. Email: nikolai.staehler@bundesbank.de.
1 Introduction

Among economists and in public (policy) debates, the issue of global imbalances has returned to the agenda with momentum. A prominent example often referred to in these discussions is the high and persistent current account surplus in Germany (see, for example, The Economist, 2017b). Reasons potentially responsible for such imbalances are, among others, financial integration, economic growth in emerging markets, higher foreign demand for German goods, population ageing or labor market reforms (see section 2 for details). In this paper, we will focus on the impact of labor market reforms on global imbalances.\(^1\)

Empirically, it can be shown that countries which have recently deregulated their labor markets indeed tend to run current account surpluses; see Bertola and Lo Prete (2015). However, theoretical contributions disagree on the existence and magnitude of such a relation. Most modern open-economy models are capable to link lower labor costs to higher international competitiveness. However, they do not find a link to the consequential – and notable – improvements in the current account and the net foreign asset positions. This especially holds for the long run (see, among others, Busl and Seymen 2013, Dao 2013, Cacciatore et al. 2016 and Gadatsch et al. 2016b, which we discuss in more detail below).

The first and foremost reason for this is that most of the relevant studies use the common representative agent model. In general, this framework entails steady-state indeterminacy and non-stationary dynamics of net foreign assets. An in-depth discussion of this problem and solutions to it can be found in Schmitt-Grohe and Uribe (2003), Hunt and Rebucci (2005), Lubik (2007) and Benigno (2009). At large, these solutions boil down to assuming additional frictions in the international financial markets whenever holdings of net foreign assets exceed some exogenously fixed reference level. That introduces a link between consumption and the net foreign asset position to achieve stationarity. While this pins down the steady-state level of international financial assets uniquely, it does so independent of policy. Therefore, as summarized by Lubik (2007), one can question the usefulness of these assumptions to study international macroeconomic issues when analyzing structural (policy) reforms.

Against this background, we build a two-region RBC model with search frictions and incomplete insurance that generates permanent savings and interest rate effects in response to permanent policy changes. Our model is in the spirit of Challe and Ragot (2016) featuring limited cross-sectional heterogeneity and a first-order precautionary savings motive. The two-region framework allows us to analyze trade and asset flows in detail. Incorporating a detailed labor market structure enables us to discuss labor market reforms elaborately. While admittedly still stylized, our modelling choice avoids having to use higher-order solution techniques to obtain an endogenous savings motive (for precautionary reasons) or having to move to a fully-fledged heterogeneous agent model which restricts the number of state variables significantly. As stressed by Ragot (2018), this modelling strategy has several advantages: It generates an elastic asset demand curve on the household side, introduces quasi-heterogeneity and remains analytically

\(^1\) Already in October 2014, Paul Krugman summarized the debate as follows: "As they [the Germans] see it, their economy was in the doldrums at the end of the 1990s; they then cut labor costs, gaining a huge competitive advantage, and began running gigantic trade surpluses."
tractable. Different from traditional heterogeneous-agent models à la Krusell and Smith (1998), agents no longer have to forecast a full, time-varying cross-sectional distribution of wealth in order to make their intertemporal decisions. The wealth distribution is only limited. However, we are primarily interested in endogenous changes in labor market risks (resulting from labor market reforms) as well as the effects on global imbalances in a two-region framework (which adds additional complexity), and less in the precise wealth distribution. We therefore do not consider the simplifications of the chosen framework as a limitation but rather as an advantage for the analysis at hand.\(^2\)

As a quantitative exercise, we use the model to quantify the contribution of the far-reaching German labor market reform in 2005 and 2006 on its current account. The so-called Hartz IV reforms significantly reduced the generosity of the unemployment benefits system. A detailed description of the Hartz reforms and of the developments of the German current account as well as its net foreign asset position can be found in appendix A. In our model, we can establish a link between these labor market reforms and the evolution of net foreign assets.

The contribution of our paper is threefold. First, on the theoretical side, we show how to overcome the problem of steady-state indeterminacy and non-stationarity of net foreign assets by including a first-order precautionary savings motive. Our extension pins down savings and net foreign assets as well as the economy-wide (natural) interest rate endogenously, also in steady state. We no longer require additional assumptions to ensure stationarity and determinacy of net foreign assets in steady state. Second, we use our model to evaluate the effects of a structural labor market reform in Germany on its current account. We show that the existing literature may indeed have underestimated the contribution of these reforms on the global imbalances significantly. While, as mentioned above, the previous literature tends to not find a link between labor market reforms and increasing net foreign asset and current account positions, our model is capable to attribute about 15\% of the observed current account increase to the reforms. Third, we contribute to the ongoing discussion on spillover effects of labor market policies. We show that, while a reduction in labor costs in one region positively affects international competitiveness, trade, consumption and output in that region (which standard models also find), it is very well possible that it does so at the cost of the other region (which is not a standard outcome), at least in the long-run.

To be more precise, the labor market in our model is characterized by standard search frictions in line with Pissarides (2000). We deviate from the common assumption of perfect consumption insurance as in Andolfatto (1996) and Merz (1995). Following Challe and Ragot (2016), we assume that workers live in a large family while employed, and all family members make the same consumption/savings decisions. However, once a worker becomes unemployed, he has to leave the family and must subsequently live on his own. He is allowed to take a share of the family assets with him and receives unemployment benefits. During the unemployment spell,\(^2\)

Other studies in a similar vein include, among others, Challe et al. (2017), McKay and Reis (2016), McKay (2017), McKay et al. (2017) and Ravn and Sterk (2016, 2017). These analyses all use models of a closed economy, however. An endogenous evolution of net foreign assets and the world interest rate can, for example, be found in models with an OLG structure (see, for example, Gale, 1971, Ferrero, 2010, Di Giorgio and Nisticò, 2013, or Di Giorgio and Traficante, 2018, for a discussion). However, the mechanism there is slightly different than the one we have in our paper and OLG models are not the focus of our analysis.
the worker decides on the share of assets taken from the family to consume each period endogenously. He is not allowed to borrow. When finding a job again, the (formerly) unemployed worker re-enters the family and brings back the remaining assets. Idiosyncratic unemployment shocks yield an endogenous distribution of workers that can be aggregated at each point in time, thus generating limited cross-sectional heterogeneity.

The incomplete consumption insurance gives rise to a first-order precautionary savings motive: Family members want to insure against income and consumption losses in case of unemployment. The amount of savings is derived endogenously and (also) depends on the unemployment risk. Households can save in physical capital and government bonds domestically. If domestic savings exceed the domestic asset demand, they also invest in international assets. The endogenous world interest rate guarantees that aggregate world asset demand equals supply. Therefore, the net foreign asset position between the two regions is determined endogenously in our model, also in the steady state.

A reduction in the generosity of the unemployment insurance system in one region (Germany in our numerical exercise) yields the standard labor market effects in that region: Because the fall-back utility of workers declines, they accept lower wages. This fosters job creation, employment and production. International competitiveness eventually increases because of lower unit labor costs.

For savings, however, there are now two opposing effects. On the one hand, higher job creation reduces the risk of a long unemployment spell. This reduces the need for precautionary saving. On the other hand, when becoming unemployed, the income loss increases. This augments the need for precautionary saving. Which of the two effects dominates is not clear from an ex-ante perspective. However, when simulating the German Hartz IV reforms on the labor market, it is clearly the latter. In order to build up the desired level of savings, aggregate consumption in Germany falls for some time before rising again once asset holdings have increased sufficiently.

The increase in savings in Germany is not absorbed domestically. Hence, Germans transfer savings to the foreign region and the net foreign asset position rises. This increases the German current account. Because the German savings glut increases world asset supply, the world interest rate starts falling. A lower interest rate makes capital investment more attractive. Hence, firms in both regions substitute capital for labor ceteris paribus. The policy-induced wage reduction in Germany compensates for this effect and employment increases, too. This is not the case in the rest of the Eurozone, and employment there falls. Initially, this can be compensated for by the fact that higher capital input increases marginal productivity of labor, generating higher wages and an increase in aggregate consumption and output in the beginning. But these positive effects fade out after some time. Overall, in the medium to long term, our model predicts a beggar-thy-neighbor effect of the Hartz reforms.

As described in appendix A, the Hartz IV reform had two components. First, the reduction of long-term unemployment benefits for workers being unemployed for more than two years. Second, the reduction of the entitlement duration to receive more generous short-term unemployment benefits from two years to one. As we will see below, simulating only the former reform step reduces precautionary savings in Germany. In that case, the now lower probability to reach the long-term unemployment state is reduced sufficiently to compensate for the expected income loss. This no longer holds when entitlement duration is reduced, too.
Compared to most existing studies focusing on the effects of labor market reforms on global imbalances (among others, Busl and Seymen 2013, Dao 2013, Cacciatore et al. 2016 and Gadatsch et al. 2016b), we find a quantitatively important and permanent effect on the German net foreign asset position. Interestingly, our results on the labor market are quantitatively well in line with studies that focus on the effect of the Hartz IV reform in a closed-economy framework (see Krebs and Scheffel, 2013 for a comparable decline in unemployment). This makes us confident that our model generates plausible results.

The rest of the paper is structured as follows. The next section briefly reviews the related literature. Section 3 derives a search and matching model with incomplete insurance. We explain the calibration in section 4. Section 5 shows results. Section 7 concludes. An appendix outlines some background on the Hartz reforms and the German current account developments.

2 Connections to Existing Literature

This paper is related to multiple areas of the literature. First, it relates to studies discussing labor market reforms in general, with a special focus on the German Hartz reforms. Second, it relates to the part of the literature that addresses the impact of such reforms on international competitiveness, the current account (CA) and policy spillovers. And third, it is related to the literature of precautionary savings and the linkages to international asset trade.

Kollmann et al. (2015) identify mainly four potential explanations of the German current account surplus in an estimated three-country DSGE model. First, they show that financial integration in the sense that interest rates in the rest of the euro area converged to the German rates prior to the introduction of the euro may have contributed to the CA developments. This point is also stressed by Mendoza et al. (2009) who show that, if countries differ in their degree of financial development, financial integration leads to global imbalances. Second, they show that a strong increase in foreign demand caused by high economic growth in emerging markets contributed to higher CA positions (see also Chen et al., 2012). A third explanation is population ageing in Germany and the associated reduction domestic demand due to an increase in savings for retirement (also addressed in Blanchard and Milesi-Ferretti, 2010). Finally, they find that the German labor market liberalization (2002-2005), especially the Hartz reforms, increased the German current account position. Even though the increase in the German current account has multiple reasons, our focus in this paper is on how (and how much) German labor market reforms affected these developments.

In this respect, our paper relates to studies analyzing the effects of the Hartz IV reform on the current account. But no consensus on the quantitative impact of the Hartz reforms on international imbalances has yet been reached. On the one hand, Kollmann et al. (2015) find that the Hartz reforms were indeed one of the main drivers of the German current account surplus. In their model, they abstract from a frictional labor market and interpret shocks to leisure as changes in the generosity of unemployment benefits. On the other hand, Busl and Seymen (2013) and Gadatsch et al. (2016b) show in a model with frictional labor markets that the Hartz reforms, now modelled as an actual decrease in unemployment benefit payments, had basically no effect on Germany's built-up of international assets. Dao (2013) reaches a similar conclusion in an
open-economy model with unionized wage bargaining. Going beyond the Hartz reforms, Cacciatore et al. (2016) study the effects of labor market deregulations in general. In a two-country model with endogenous producer entry and search frictions on the labor market, they show that a reduction in unemployment benefits causes an initial short-run increase in the current account which is followed by a strong reversal and a current account deficit. Quantitatively, the effects on the current account that they identify are small, however.

Generally, these paper find positive spillovers to rest of the trading partners, at least in the long run. While German international competitiveness indeed increases after the Hartz reforms in these analyses, the reform also augments German income and the demand for foreign goods. The price and quantity effects, in the end, even out in the model such that there are basically no current account effects, but trading partners are positively affected by the demand effect. What the studies discussed so far have in common is that workers are perfectly insured within a family, and there is no precautionary savings motive. We argue that allowing for an endogenous savings motive in steady state (for example, via a precautionary savings channel) is crucial.

There are several other – also empirical – contributions which focus on the general effect of labor market reforms on the current account. For example, Kennedy and Slok (2006) argue that a deregulation on the labor market (such as Hartz IV) leads to an immediate fall in prices and wages and, therefore, an increase in the trade balance. In the long run, however, the capital balance adjusts because the increased profitability of domestic capital leads to an influx of foreign capital. This effect counteracts the increase in net exports and reverses the current account. Bertola and Lo Prete (2015) argue that deregulations of labor market institutions increase the uninsurable risk of becoming unemployed. This increase in risk leads to higher precautionary savings and has a positive effect on current accounts. Kennedy and Slok (2006) and Bertola and Lo Prete (2015) both find a (weak) positive relationship between labor market deregulations on current accounts. Nonetheless, neither of them quantifies the effect of a specific deregulation.

Our work is further related to papers analyzing the interactions between unemployment risk and precautionary savings in a heterogeneous-agent framework (see Challe et al., 2017, Challe and Ragot, 2016, Den Haan et al., 2017, Heathcote and Perri, 2017, as well as McKay and Reis (2016), McKay (2017), McKay et al. (2017) and Ravn and Sterk (2016, 2017)). These papers abstract from potential effects on a country's net foreign asset position and mainly use a closed-economy framework.

To our knowledge, studies that relate precautionary savings to international developments tend to use higher-order savings motives and, thus, differ to our approach. Hoffmann et al. (2014) find cross-sectional empirical evidence for a positive correlation between capital flows and output volatility. In a small open economy RBC model, they explain this stylized fact with a mechanism that links higher expected income volatility with precautionary savings because

\[4\] An exception here is Helpman and Itskhoki (2010). They use a two-sector Melitz (2003) model enhanced with search frictions on the labor market and find that a labor market reform that is beneficial for the reforming country may harm its trading partner as a result of higher international competitiveness. This is because competitiveness of firms in the home country increases while foreign firms are crowded out in the differentiated sector. In models where traded and non-traded goods are not differentiated, however, this channel is absent. The precautionary savings motive in our model endogenizes world assets and capital interest, also in steady state, and can thus produce negative spillovers even without product differentiatation a la Melitz (2003).
households want to insure against income shocks. Building on a model of buffer stock saving, Carroll and Jeanne (2009) endogenize the optimal level of domestic and precautionary wealth which serves to insure against idiosyncratic risk and analyze the role of a precautionary savings motive for reducing global imbalances.⁵

Another strand of the literature focuses on the effects of changes in unemployment benefits in a closed economy framework. Prominent studies evaluating the effects of Hartz IV on German unemployment from a macroeconomic perspective are Krebs and Scheffel (2013), Krause and Uhlig (2012), Hochmuth et al. (2018) and Launov and Wälde (2013). Krebs and Scheffel (2013), Krause and Uhlig (2012) and Hochmuth et al. (2018) find that decreasing the generosity of the unemployment insurance system reduces wages and unemployment, whereas Launov and Wälde (2013) find only negligible effects. Not specifically related to the German Hartz reforms, Caciatore and Fiori (2016) also find that a cut in unemployment benefits fosters job creation and output. Focusing on entitlement duration, Hagedorn et al. (2015) find that an abrupt cut in benefit extensions caused a significant increase in employment. In contrast to our study, all those papers abstract from a precautionary savings channel.

We see our paper as complement to those existing papers by providing insight on how much the far-reaching German unemployment benefit reform (Hartz IV) has contributed to the increase in the German current account position via a precautionary savings channel. To our knowledge, we are the first to quantify the effects of a labor market reform in a two-country framework with incomplete insurance.

3 The Model

We build a two-region RBC model with incomplete insurance and search frictions on the labor market in the spirit of Pissarides (2000). In each region, there is a continuum of workers on the unit interval who can either be employed or unemployed. Employed workers live in a large family with a dominant family head. The family head takes over wage bargaining. This modelling strategy serves to eliminate the heterogeneity within the family and ensures equal consumption and savings level for all its members. Thus, there is perfect insurance within the family (in line with Merz, 1995 and Andolfatto, 1996).

Nonetheless, our model features incomplete insurance of idiosyncratic unemployment risk. A worker who becomes unemployed has to leave the family and takes a share of the family’s savings with him (a modelling choice building on Challe and Ragot 2016). All unemployed workers receive government-financed duration dependent unemployment benefits κ_t^B which are more generous for short-term unemployment. When unemployed, workers have to consume their entire savings within $K > 0$ periods. While this assumption may seem restrictive, we see below that, when choosing K to be large enough, unemployed workers have virtually spend all their assets before they reach period K. Furthermore, using survey data evidence on wealth of unem-

⁵ Focusing on the role of aggregate risk, Durdu et al. (2009) assess to which extend the demand for precautionary wealth depends on output volatility, financial globalization as well as the risk of a sudden stop. Fogli and Perri (2006) and Fogli and Perri (2015) relate the role of business cycle volatilities to a country’s external balance position. They argue that if residents cannot perfectly insure against country specific aggregate shocks, the incentive to hold precautionary savings increases which, in turn, affects the net foreign asset position.
ployed, we observe that unemployed have very little assets left once their unemployment spell approaches one year; see appendix B for details. How much of their assets they consume each period arises endogenously. If an unemployed worker is hired again, he re-enters the family and brings his remaining assets back to the family. In such an environment, there is a true consumption risk related to the employment status. That gives rise to precautionary savings without altering much in the standard RBC model.

As is common in the RBC literature, there is a representative firm owned by the family. It uses labor and capital as production inputs. Firms post vacancies and pay vacancy posting costs \(\kappa \) to hire unemployed workers. Matches between workers and firms are formed through a standard Cobb-Douglas matching function, and wages are determined by Nash-bargaining. The two regions, Home (Germany) and Foreign (the Rest of the Euro Area), trade imperfectly substitutable goods on competitive markets in a currency union. Labor is immobile across countries. We model both countries analogously. However, the countries will differ in size, the steady-state unemployment rate, replacement rates and productivity. We denote Home with subscript \(H \) and Foreign with \(F \).

Figure 1 summarizes the timing of events within the period. At the first stage, matches are exogenously destroyed, firms post vacancies and new matches are formed. Once matching has taken place, unemployed workers leave the family (taking a fraction of the family wealth with them) and former unemployed members who found a job again, re-enter the family. This timing of event allows for immediate re-hiring within the same period and, hence, takes into account that the duration of a large fraction of unemployment spells is below one quarter (see, for example, Galí, 2010). After the labor market transition stage, production takes place. Firms produce and family members receive income in form of net wages, firm profits and interest payments on their assets. Finally, in the consumption/savings stage, the family head allocates the same amount of goods and assets to each member.

3.1 Households: The Family and Unemployed Workers

Within the family, all workers pool their earnings consisting of net wage income, firm profits and interest payments on previous asset purchases. Therefore, there is perfect insurance within employed workers and, as they are symmetric, they choose the same consumption and asset
holding level. This is identical to the modelling strategy of Challe et al. (2017) where the family head solves the maximization problem and redistributes consumption goods and assets equally among family members. Independent of the employment status \(i \in \{e, e u, \text{uu} \} \), with \(e \) indicating employed, \(e u_k \) short-term unemployed for \(k \) periods, where \(k \in K \), and \(uu \) indicating long-term unemployed, workers have CRRA utility with intertemporal risk aversion parameter \(\sigma_c \)

\[
u(c^t) = \frac{(c^t)^{1-\sigma_c} - 1}{1 - \sigma_c}.
\]

(3.1)

An employed worker maximizes

\[
V^e_t(S_t) = \max_{(c^t, a_t)} \left\{ u(c^t) + \beta E_t [(1 - s(1 - \rho_{t+1}))V^{e}_{t+1}(S_{t+1}) + s(1 - \rho_{t+1})V^{e u}_{t+1}(a_{t+1}, S_{t+1})] \right\}
\]

(3.2)

each period \(t \), where \(c^t \) is real per-capita consumption of a family member and \(a_t \) are per-capita assets/bonds that pay gross interest \(W_t \). Let \(S_t = \{\bar{\mu}_t, e^t_j\} \) summarize the aggregate state of the economy, where \(\bar{\mu}_t \) is the beginning of period cross-sectional distribution of workers among labor market states and \(e^t_j \) denotes aggregate productivity. If the worker is separated, which happens at the exogenously given probability \(s \), and is not re-hired within that period at rate \(\rho_t \), he has to leave the family. Then, he faces utility of being unemployed (for one period), \(V^{e uu}_t \). As we will see below, he subsequentially moves to states \(\{V^{e u_2}_t, ..., V^{e u_k}_t, V^{uu}_t\} \) if he is not re-hired during the process. In real terms, each family member is subject to the following per-capita budget constraint in each period:

\[
c^t_t + a_t + \ell = (1 - \tau^w_t)\omega_t + \frac{\Pi_t}{N_t} + (1 - s(1 - \tau^F_t)(1 - \rho_t))(1 + \pi_t)^{-1}
\]

(3.3)

Consumption, \(c^t_t \), and asset purchases, \(a_t \), as well as a lump-sum tax, \(\ell \), have to be financed by the wage income, \(\omega_t \), which is subject to a labor income tax at rate \(\tau^w_t \), firm profits, \(\Pi_t \), divided by the number of family members, \(N_t \), and interest payments on assets \(R^W_{t-1}a_{t-1}^{<1 + \pi_t} \). When workers become unemployed and have to leave the family, they take a share of the family assets with them. However, this is not a fair share, but the family deducts a fraction \(\tau^F \) of that fair share, which remains in the family. We assume this for two reasons. First, helps to mimic the observed differences in wealth levels of employed and short-term unemployed workers. Figure 10 in appendix B, we show that the wealth level of employed is considerably higher than the level of wealth short-term unemployed workers have at their disposal. We choose \(\tau^F \) in order to match this empirical fact. Second, it is necessary that the consumption levels of employed workers are always higher than of unemployed workers (in state \(k = 1 \)), ie \(c^e > c^{e u_1} \). This ranking of consumption levels for workers by employment status guarantees that employed workers have a precautionary savings motive and that previously unemployed workers have an incentive to return to the family, which ensures existence of the equilibrium; see Challe and Ragot (2016) for
a detailed discussion. In addition, the family takes into account that workers who lost their job in some previous periods may find a job and return to the family. In that case, they bring the share of assets they have not yet consumed back to the family (of which the individual family member then receives a share $1/N_t$). This corresponds to the last term on the right-hand side of equation 3.3, where $r^e_{t}u_{k}$ defines the remaining share of assets an unemployed worker in state k brings back the family when re-hired (i.e. the “rest” of the assets he has left the family with). It holds that $r^e_{t}u_{k} = (1 - \theta^1_t) - \theta^k_t$, where θ^k_t is the share of assets consumed in unemployment state k.

Maximizing 3.2 subject to 3.3 with respect to consumption c^e_t and assets a_t results in the family member’s marginal utility of consumption and optimal asset holdings choice given by

$$\Omega_t = \frac{1}{R^w_t} = \beta E_t \left[\left(1 - s(1 - \tau^F)(1 - \rho_{t+1}) \right) \frac{\lambda^e_{t+1}}{\lambda^e_t} \left(\frac{1}{1 + \pi_t} + \sum_{k=1}^{K-1} \beta^{k-1} \frac{\lambda^e_{t+k}}{\lambda^e_t} \frac{\rho^1_{t+k} \mu^e_{t+k-1} \cdot r^e_{t+k}(1 - \tau^F)}{N_{t+k}^e + \pi_{t+k}} \right) \right] + s(1 - \rho_{t+1}) \frac{\lambda^e_{t+1}}{\lambda^e_t} \sum_{k=1}^{K} \frac{\theta^e_{t+k}(1 - \tau^F)}{1 + \pi_{t+k}}$$

which $r^e_{t}u_{k} = \theta^k_t/(1 + \pi_{t+k}) + \beta(1 - \rho_{t+k}) \lambda^e_{t+k} / \lambda^e_t \cdot r^e_{t+k}$ as long as $k < K$ and $r^e_{t}u_{k} = \theta^K_t/(1 + \pi_{t+K})$. Equation 3.4 is the Euler equation in our setting. In the standard representative agent framework, all but the first term on the right-hand side would be zero, boiling down to the standard Euler equation. When taking the precautionary savings motive into account, Ω_t is now the stochastic discount factor from period t to the next, and λ^e_t equals the marginal utility of consumption of an employed worker. The family members take into account that workers who are unemployed today may find a job in the next period and bring assets back to the family. This results in the second term on the right-hand side of equation 3.4. Furthermore, an employed worker also considers that all short-term unemployed workers who live off their savings in period k after dismissal derive some marginal utility $\lambda^e_{u_{k}}$, resulting in the last term of equation 3.4.

As we aim at analyzing the German Hartz reforms as an exemplary case study, we need to match the basic institutional settings of the German unemployment insurance system. Hence, we distinguish between short and long-term unemployed workers. Short-term unemployed workers in unemployment state k receive a more generous unemployment benefits payment $k^B_{t} = rrs(1 - \tau^{w}_{t-k})u_{t-k}$, where rrs is the replacement rate related to their net wage income in their last period of being employed. In the pre-reform steady state, unemployed workers move from short to long-term unemployment after K periods. When this happens, they receive an analogous payment k^B_{t}, with the difference that the replacement rate is lower, $rrl < rrs$. In

6 Remember that unemployed workers in period K do not have any assets left at the time they would return to the family. Hence, the sum only goes to $K - 1$. Also note that the maximization problem of the family head is the maximization of an employed worker multiplied by the number of family members N_t, taking into account that some members become unemployed in the next period and take their assets with them.
period t the maximization problem of a short-term unemployed worker is given by

$$V_t^{eu}(a_t, S_t) = \max_{\{c_t^{eu}, \theta_t^k\}} \left\{ u(c_t^{eu}) + \beta E_t\{ \rho_{t+1} V_{t+1}^{e}(\mu_{t+1}, e_{t+1}^{e}) + (1 - \rho_{t+1}) V_{t+1}^{eu}(a_{t+1}, S_{t+1}) \} \right\}$$

subject to the budget constraint

$$c_t^{eu,k} + \bar{I} = \kappa_t^{e} + \theta_t^{k} R_{t-1} a_{t-k}(1 - \tau^k).$$

Short-term unemployed workers in k consume a share θ_t^k of their assets in addition to their unemployment benefits each period. θ_t^k is, thus, a choice variable. However, after K periods, all assets have to be spent.\(^7\) Hence, in the last period of short-term unemployment, the utility function is, thus,

$$V_{t}^{eu,K}(a_t, S_t) = \max_{\{c_t^{eu,K}\}} \left\{ u(c_t^{eu,K}) + \beta E_t\{ \rho_{t+1} V_{t+1}^{e}(S_t) + (1 - \rho_{t+1}) V_{t+1}^{eu}(S_{t+1}) \} \right\}.$$

Short-term unemployed workers decide each period which share θ_t^k of their assets they consume. Since all assets have to be consumed within K periods, it holds that $\sum_{k=1}^{K} \theta_{t-K+k}^k = 1$ and, given the choices made previously, θ_t^K is "fixed". The first-order conditions with respect to any θ_t^k are

$$\lambda_t^{eu} = \beta \rho_{t+1} \lambda_{t+1}^{\theta} \frac{\rho_{t+1}^{e} u_t^{e}}{\mu_{t+1}^{e}} + \beta (1 - \rho_{t+1}) \lambda_{t+1}^{eu},$$

where the λ's are the corresponding marginal consumption utilities. Given the utility for a long-term unemployed worker,

$$V_{t}^{eu}(a_t, S_t) = \max_{\{c_t^{eu}\}} \left\{ u(c_t^{eu}) + \beta E_t\{ \rho_{t+1} V_{t+1}^{e}(S_t) + (1 - \rho_{t+1}) V_{t+1}^{eu}(S_{t+1}) \} \right\}.$$

where

$$c_t^{eu} + \bar{I} = \kappa_t^{e},$$

it is straightforward to derive the marginal utilities of consumption by employment status $i \in [e, e u, u u]$:

$$\lambda_t^{i} = (c_t^{i})^{-\sigma_c}.$$

The solution of the employed workers' problem are the decision rules for assets, denoted by $g_t(A)$, and consumption, denoted by $g_t(e)$. Depending on their unemployment spell k, short-term unemployed workers choose decision rules $g_{c^{eu}}(a, S)$ for consumption and the share of assets they spend $g_{c^{eu}}(a, S)$ and long-term unemployed choose $g_{c^{eu}}(a, S)$.

\(^7\) This corresponds to the basic cake-eating problem of Gale (1967) where, in our context, the cake is the value of assets with which a recently unemployed worker leaves the family.
3.2 Production

The representative firm faces the Cobb-Douglas production function
\[y_t = e^z_t k_{t-1}^{\alpha} N_t^{1-\alpha} \] with input factors capital \(k_{t-1} \) and labor \(N_t \). Productivity \(e^z_t \) can follow an AR(1)-process.

The firm maximizes profits \(\Pi_t \) by choosing the level of capital, employment and the number of vacancies to post. Therefore, the maximization problem reads
\[
\Pi_t = \max_{\{k_t, N_t, V_t\}} E_t \sum_{\tau=0}^{\infty} \Omega_t \left\{ \frac{P_t}{\bar{P}_t} Y_t - \omega_t N_t - k^{\mu}_t V_t - r^k_t k_{t-1} - \frac{\psi^w_t}{2} \left(\frac{\omega_t}{\omega_{t-1}} - 1 \right) N_t \right\}
\]
subject to the law of motion for employment
\[N_t = (1-s)N_{t-1} + q_t V_{t-1}, \]
where \(\omega_t \) are wages, \(r^k_t \) is the capital interest rate and \(q_t \) denotes the vacancy-filling probability, all derived below. Real vacancy posting costs are given by \(k^{\mu}_t \), and changing wages is associated with quadratic Rotemberg adjustment costs governed by \(\psi^w_t \). Since firms belong to the family, they discount the future with the family’s discount factor \(\Omega_t \). The solution to the maximization problem in real terms is given by
\[
r^k_t = a \frac{P_t}{\bar{P}_t} e^z_t \left(\frac{N_t}{k_{t-1}} \right)^{1-\alpha}
\]
\[
J_t = \frac{P_t}{\bar{P}_t} e^z_t (1-\alpha) \left(\frac{k_{t-1}}{N_t} \right)^{\alpha} - \omega_t - \frac{\psi^w_t}{2} \left(\frac{\omega_t}{\omega_{t-1}} - 1 \right)^2 + E_t \{ \Omega_t (1-s) J_{t+1} \}.
\]

3.3 Investment funds

Investment funds collect deposits from households, \(N_t a_t \), and then allocate them across a number of asset classes: physical capital, \(k_t \), government bonds, \(b_t \), and international assets, \(N_F A_t \), subject to the loanable funds constraint
\[
N_t a_t = b_t + N_F A_t + k_t.
\]
As the investment funds are owned by the family, they discount future revenue flows at \(\Omega_t \). In order to build up capital, the fund needs to purchase investments goods \(I_t \). Investment in physical capital is subject to the investment adjustment costs as in Christiano et al. (2005). The law of motion for capital is given by
\[
k_t = (1-\delta) k_{t-1} + \left(1 - \frac{\psi^k}{2} \left(\frac{I_t}{I_{t-1}} \right) \right) I_t \text{label cap acccum}
\]
which states that today's capital stock equals yesterday's capital stock net of depreciation (at rate δ) plus new investments net of investment adjustment costs, influenced by the parameter ψ^k.

This generates the well known no-arbitrage conditions

$$ R^w_t - 1 = \kappa^k_T - TQ_t + TQ_{t+1}(1-\delta) \tag{3.19} $$

and

$$ 1 = TQ_t \left[1 - \frac{\psi^k}{2} \left(\frac{I_t}{I_t-1} \right)^2 - \psi^k \left(\frac{I_{t+1}}{I_{t-1}} - 1 \right) \frac{I_t}{I_{t-1}} + \Omega_t \psi^k \left(\frac{I_t}{I_{t-1}} - 1 \right) \left(\frac{I_{t+1}}{I_t} \right)^2 \right], \tag{3.20} $$

where TQ_t denotes the shadow price of capital, Tobin's Q.

3.4 Matching and Wage Bargaining

The following section describes the modelling of the labor market block in our model. We follow Blanchard and Galí (2010) and allow for immediate rehiring.

3.4.1 Matching and Worker Flows

Matches between workers and firms are established via a constant-return Cobb-Douglas matching function,

$$ M_t = \kappa^e U_t^\eta V_t^{1-\eta} \tag{3.21} $$

where the total number of searching workers (who enter the matching function) is given by $U_t = 1-(1-s)N_t-1$. The firm's vacancy filling rate is given by the ratio of matches over vacancies, $q_t = M_t / V_t$. From the worker's perspective, the probability of finding a job is defined as $\rho_t = M_t / U_t$.

The resulting employment-law-of-motion is given by

$$ N_t = (1-s)N_{t-1} + M_t \tag{3.22} $$

Note that, due to immediate rehiring, the number of searching worker exceeds the total number of unemployed workers in one period. Unemployment is, thus, given by

$$ u_t = 1 - N_t = \sum_{k=1}^{K} \mu_t^{e,u}_k + \mu_t^{u,u} \tag{3.23} $$

The number of unemployed workers in their first period of unemployment (who were not immediately rehired) is given by $\mu_t^{e,u}_1 = s(1-\rho_t)N_{t-1}$. The number of short-term unemployed workers in subsequent states is then determined by the those unemployed workers who did not find a job in the previous period, i.e. $\mu_t^{e,u,k} = (1-\rho_t)\mu_t^{e,u,k-1}$. The number of long-term unemployed workers is $\mu_t^{u,u} = (1-\rho_t)(\mu_t^{u,u} + \mu_t^{e,u,K})$.

12
3.4.2 Workers Marginal Value

In order to calculate the Nash-bargained wage, we need to derive the worker’s marginal value of employment. It depends on whether she is part of the family or unemployed. The marginal value of an employed worker can be derived by taking the first-order condition of the family’s value function subject to the family’s budget constraint with respect to the level of employment \(N_t \). This yields

\[
\begin{align*}
\psi^e_t &= \frac{u(c^e_t)}{\lambda_t^e} - [c^e_t + a_t + \bar{t}_t - (1 - \tau^e)\omega_t - \beta E_t \left[\frac{\lambda_{t+1}^e}{\lambda_t^e} (1 - s(1 - \rho_{t+1})) \right] R_tW a_t] \\
&+ \beta E_t \left[\frac{\lambda_{t+1}^e}{\lambda_t^e} (1 - s(1 - \rho_{t+1})) \psi^e_{t+1} + \frac{\lambda_{t+1}^e}{\lambda_t^e} s(1 - \rho_{t+1}) \psi_{t+1}^{u_t} \right]
\end{align*}
\]

Hence, every employed worker adds utility \(\frac{u(c^e_t)}{\lambda_t^e} \) to the family. In addition, every family member contributes labor income and returns to their assets to the family. Furthermore, every employed worker consumes, saves and pays taxes. If the family member is still employed in the next period, the gain for the family is \(\psi^e_{t+1} \), however, with probability \(s(1 - \rho_{t+1}) \), the member has to leave the family because she becomes unemployed. From the perspective of the family, who at least partly cares about the utility of those who become unemployed next period (because every member could be hit), this is taken into account by \(\psi_{t+1}^{u_t} \).

The marginal values of a short-term unemployed up to \(k \in (1, \ldots, K-1) \) is given by

\[
\psi^e_{t+1} = \frac{u(c^e_{t+1})}{\lambda_t^e} + \beta E_t \left[\frac{\lambda_{t+1}^e}{\lambda_t^e} (1 - \rho_{t+1}) \psi^e_{t+1} + \frac{\lambda_{t+1}^e}{\lambda_t^e} \rho_{t+1} \psi^e_{t+1} \right],
\]

while in period \(K \) it is

\[
\psi^e_{K+1} = \frac{u(c^e_{K+1})}{\lambda_t^e} + \beta E_t \left[\frac{\lambda_{t+1}^e}{\lambda_t^e} (1 - \rho_{t+1}) \psi^e_{K+1} + \frac{\lambda_{t+1}^e}{\lambda_t^e} \psi^e_{K+1} \right].
\]

For the long-term unemployed worker, the utility value is given by

\[
\psi^{u_t} = \frac{u(c^{u_t})}{\lambda_t^{u_t}} + \beta E_t \left[\frac{\lambda_{t+1}^{u_t}}{\lambda_t^{u_t}} (1 - \rho_{t+1}) \psi^{u_t}_{t+1} + \frac{\lambda_{t+1}^{u_t}}{\lambda_t^{u_t}} \psi^{u_t}_{t+1} \right].
\]

3.4.3 Wage Bargaining

Using the marginal utilities of working for different household types derived in the previous subsection, we can solve for the Nash-bargained wage. We assume that firms and the family head bargain for new as well as existing matches. The family head’s bargaining power is \(\zeta \) and the surplus of having one additional employed member is given by \(\psi_t = \psi^e_t - \psi^e_{t+1} \). The firm’s surplus of hiring one additional worker is \(f_t \). Therefore, is derived from solving

\[
\omega_t = \max_{\psi_t} \left[\psi_t^e \right]^{\zeta} [f_t]^{1-\zeta},
\]
which results in the following wage sharing rule:

\[
1 + \psi w \left(\frac{w_t}{w_{t-1}} - 1 \right) \frac{1}{w_{t-1}} + (1 - s) \Omega_t \psi w \left(\frac{w_{t+1}}{w_t} - 1 \right) \frac{w_{t+1}}{w_t^2} \] \tilde{w}_t = \frac{\zeta}{1 - \zeta}(1 - \tau w)J_t. \tag{3.29}
\]

3.5 Fiscal Authority

The fiscal authority finances government spending \(G_t \) and unemployment benefits for short and long-term unemployed workers (\(\sum_{k=1}^{K} \kappa_t^{BS} \mu_t^e u_k + \kappa_t^{BL} \mu_t^u u \)) as well as interest payments on outstanding government debt (\(\frac{R_W}{1+\pi_t} \)) by a lump-sum tax \(\bar{t} \), a labor-income tax \(\tau w \) and by issuing new government bonds \(b_t \):

\[
G_t + \sum_{k=1}^{K} \kappa_t^{BS} \mu_t^e u_k + \kappa_t^{BL} \mu_t^u u + \frac{R_W^t b_t}{1+\pi_t} = \tau w \omega_t N_t + \bar{t} + b_t. \tag{3.30}
\]

As we are interested in the steady-state comparison and the corresponding transition path after a policy change in the analysis below, we assume that government spending is exogenously given by \(\bar{G} \). However, for a stochastic analysis, it would be straightforward to extend this to an AR(1)-process. The labor tax rule is given by

\[
\log(\tau w / \bar{\tau} w) = \rho \log(\tau w_{t-1} / \bar{\tau} w) + \chi^b(b_t / \bar{b}), \tag{3.31}
\]

where \(\rho \) is a smoothing parameter and \(\chi^b \) determines the elasticity of the labor income tax rate to deviations from the steady-state level of government debt. This ensures stationarity of government debt (see Schmitt-Grohe and Uribe 2007).

3.6 International Linkages

In our model, the two countries are linked by trade in consumption goods and international assets. We define the terms of trade \(TOT_t \) as the ratio of producer prices \(TOT_t = \frac{p_t H}{p_t F} \) and the real exchange rate \(RER_t \) as the ratio of consumer prices \(RER_t = \frac{P_t H}{P_t F} \).

Asset market clearing implies that total assets in the home economy, \(N_t a_t \), have to equal government debt plus net foreign assets and capital, \(b_t + NFA_t + k_t \). Hence, the loanable funds constraint, equation 3.17, must hold. As world assets must be in zero net supply, it must also hold that \(r s^a NFA_{t,H} + (1 - r s^a)RER_{t,H}NFA_{t,F} = 0 \), where \(r s^a \) is the relative size of region \(a \). A country’s net foreign asset position is defined as last period’s assets plus current net exports, \(NX_t \),

\[
P_t NFA_t = R_t^{W} P_{t-1} NFA_{t-1} + NX_t, \tag{3.32}
\]

and the current account is given by \(CA_t = NFA_t - NFA_{t-1} P_{t-1} / P_t \).

Net exports can be derived as follows. Households are assumed to consume goods produced in home and foreign goods. The corresponding consumption bundle in country \(j \in \{H, F\} \) is
given by

\[C_{t,j} = (\gamma_j^C)^{1/\eta_c} c_{H,t,j}^{(\eta_c-1)/\eta_c} + (1 - \gamma_j^C)^{1/\eta_c} c_{F,t,j}^{(\eta_c-1)/\eta_c} \eta_c/(\eta_c-1) \]

(3.33)

where \(c_{H,t,j} \) denotes goods produced in the Home country and produced in region \(j \). Analogously, \(c_{F,t,j} \) denote goods produced in \(F \) and consumed in \(j \). \(\gamma_j^C \) denotes the consumption bias towards goods produced in Home, with \(\gamma_j^C_H \) thus determining the home bias in the home country \(H \). The home bias in \(F \) is given by \((1 - \gamma_j^C) \). \(\eta_c \) is a constant parameter determining the elasticity of substitution between home and foreign goods. The demand for home and foreign consumption goods can, therefore, be expressed as

\[c_{H,t,j} = \gamma_j^C \left(\frac{P_{t,H}}{P_{t,j}} \right)^{-\eta_c} c_{t,j} \]

(3.34)

and

\[c_{F,t,j} = (1 - \gamma_j^C) \left(\frac{P_{t,F}}{P_{t,j}} \right)^{-\eta_c} c_{t,j} \]

(3.35)

Assuming an analogous aggregator for physical capital investment, it is straightforward to get net exports. From all this, the consumer price index (CPI) in \(j \) will be is given by

\[P_{t,j} = \left[\gamma_j^C P_{t,H}^{1-\eta_c} + (1 - \gamma_j^C) P_{t,F}^{1-\eta_c} \right]^{1/(1-\eta_c)}. \]

3.7 Market Clearing

Equilibrium in the goods market implies that the economy-wide resource constraint must hold in Home (\(H \)) and in Foreign (\(F \)):

\[Y_{t,H} = C_{t,H} + G_{t,H} + \kappa^U V_{t,H} + EXP_{t,H} - P_{t,H} IM P_{t,H} \]

(3.36)

\[Y_{t,F} = C_{t,F} + G_{t,F} + \kappa^U V_{t,F} + EXP_{t,F} - P_{t,F} IM P_{t,F} \]

(3.37)

3.8 Equilibrium

Now we can define the equilibrium. For expositional clarity, we summarize the model definitions for one country.

Definition 1. A recursive equilibrium is a set of value and policy functions, a set of prices, and labor-market flows such that the following statements hold:

1. **Employed workers:** Given \(R_t^w, \omega_t \) and \(\tau_t^w \), the value functions \(V^e(S) \) and policy functions \(g_a(S) \) and \(g_{c,e}(S) \) solve the employed workers’ problem.

2. **Short-term unemployed workers:** Given \(R_t^w \) and \(\kappa_t^{BS_k} \), the value and policy functions \(V^{e_u}(a,S), g_{c,e_u}(a,S) \) and \(g_{\theta,e_u}(a,S) \) solve the short-term unemployed workers’ problem where \(k \in \{1, ..., 8\} \). Furthermore, for the share of assets consumed in short-term unemployment, it holds that \(\sum_{k=1}^K \theta_{t-K+k}^k = 1 \).
3. **Long-term unemployed workers:** Given \(\kappa_{t}^{BS} \), the value and policy functions \(V^{uu}(a,S), g_{c=uu}(a,S) \) solve the long-term unemployed workers’ problem.

4. **Firm:** Given \(p_{t}, R_{t}^{w}, \omega_{t} \), the demand for capital \(k_{t} \), labor input \(N_{t} \) and vacancies \(V_{t} \) is optimal (i.e. profit maximizing) from the representative firm's point of view.

5. **Law of motion for capital:** Capital evolves according to 3.20.

6. **Matching:** \(\rho_{t} \) and \(q_{t} \) are functions of vacancies \(V_{t} \) and unemployment \(U_{t} \) and follow 3.21. The job-creation condition 3.16 determines the vacancy-filling rate \(q_{t} \). Given \(q_{t} \), employment evolves according to 3.13.

7. **Wages:** Given \(\bar{w}^{e}, \bar{w}^{e u}, J_{t}, \omega_{t} \) satisfies the Nash bargaining solution 3.28.

8. **Government:** Given \(\omega_{t}, \kappa_{t}^{BS}, \kappa_{t}^{BL}, \tau_{t}^{w} \) and the cross-sectional distribution of workers \(\bar{\mu} \), 3.30 holds and the labor tax rate follows 3.31.

9. **Market Clearing and International Linkages:** The market clearing conditions 3.36 and 3.37 hold and asset market clear, hence, 3.17 is satisfied. In equilibrium, the world-wide value of aggregate imports equals aggregate exports and world assets are in zero net supply.

4 Calibration

We calibrate the model to quarterly frequency. We build on the calibration strategy of Moyen and Stähler (2014) and Christoffel et al. (2009). Table 2 shows the baseline calibration. The calibration of Home (Germany) and Foreign (Rest of Euro Area) is asymmetric. The two regions differ with respect to country size, the steady-state unemployment rate (and, thus, employment risk) and productivity. The size of the Home country, Germany, amounts to 27.1 percent (see Gadatsch et al. 2016b). We set the discount factor to \(\beta = 0.965 \) and the risk aversion parameter to \(\sigma_{c} = 2 \). The latter is a standard value from the literature, but we perform a robustness analysis on that value in the appendix. The lower value for \(\beta \) is due to the precautionary savings model (see Challe et al., 2017, for a discussion).

<table>
<thead>
<tr>
<th>Target</th>
<th>Symbol</th>
<th>Value</th>
<th>Home</th>
<th>Foreign</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPI inflation</td>
<td>(\pi)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPI</td>
<td>(p)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CPI</td>
<td>(P)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Real exchange rate</td>
<td>(RER)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Terms of Trade</td>
<td>(ToT)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Current Account</td>
<td>(CA)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>unemployment rate</td>
<td>(u)</td>
<td>0.106</td>
<td>0.094</td>
<td></td>
</tr>
<tr>
<td>Job-filling rate</td>
<td>(q)</td>
<td>0.7</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Firms’ Profits</td>
<td>(\Pi)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tobin’s Q</td>
<td>(TQ)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Targets
Table 2: Baseline Calibration

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Symbol</th>
<th>Home</th>
<th>Foreign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country size</td>
<td>Θ</td>
<td>0.27</td>
<td>0.73</td>
</tr>
<tr>
<td>Import share</td>
<td>i_m</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Capital depreciation</td>
<td>δ</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Weight on capital in production</td>
<td>α</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Elasticity of substitution between home and foreign goods</td>
<td></td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>Preferences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discount factor</td>
<td>β</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>Risk aversion</td>
<td>σ_c^2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Home bias</td>
<td>γ</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Bargaining and Production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matching elasticity</td>
<td>η</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Workers’ bargaining power</td>
<td>ζ</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Job-finding rate</td>
<td>ρ^z</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Productivity (SS)</td>
<td>e^z</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>Policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replacement rate for short-term unemployed</td>
<td>r_{rs}</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Replacement rate for long-term unemployed</td>
<td>r_{rl}</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Autocorrelation government spending</td>
<td>ρ^G</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Autocorrelation tax rate</td>
<td>ρ^τ</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Lump-sum Tax rate (SS)</td>
<td>$\bar{\tau}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Elasticity of tax rate response to debt deviations</td>
<td>χ^b</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Share of wealth kept by family head</td>
<td>τ^f</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Investment adjustment costs parameter</td>
<td>ψ^K</td>
<td>4.95</td>
<td>4.93</td>
</tr>
<tr>
<td>Wage adjustment costs parameter</td>
<td>ψ^W</td>
<td>653</td>
<td>653</td>
</tr>
</tbody>
</table>

Regarding the labor market, we set the elasticity of matches with respect to unemployment to 0.5, which is a standard value. Furthermore, in accordance with IAB administrative data, we set the quarterly job-finding rate to 9 percent which corresponds to the low job-finding rate in Germany in 2004Q4 prior to the reforms. Targeting a job-filling rate of 0.7 as in Christoffel et al. (2009) then pins down the matching efficiency, vacancy posting costs and the separation rate. The bargaining power of workers is also set to the standard value of 0.5, but we also perform a robustness analysis here in the appendix. We assume wage adjustment costs to be 653, as in Moyen et al. (2016). Investment adjustment costs are set slightly below five in both regions along the lines of Gadatsch et al. (2016a). In the appendix, we discuss the role of both types of adjustment costs. As expected, the transition is prolonged, as adjustments do not occur immediately, but the qualitative responses are the same, which especially holds for the international developments.

For the policy parameters, we set the replacement rate for short-term unemployed to 0.6 and the initial replacement rate for long-term unemployed to 0.5. This corresponds to the legal value for recipients with children (hence, the upper bound). Furthermore, the autocorrelation of the labor tax rate and government spending amounts to 0.99. In addition, we allow the labor tax rate to respond the deviations in government debt to ensure stationarity in government spending. The parameter χ^b determines the elasticity of this response and is set to 0.05 (see Kirsanova and Wren-Lewis 2012). Performing an analogous simulation in which the lump-sum tax $\bar{\tau}$ takes care of debt stabilization does not alter our results much. The reason is that all households, also the unemployed workers, will be affected by that tax.
Table 1 shows the targets in our calibration. In the initial steady state, inflation is assumed to be zero and all prices are normalized to one which, by construction, then also holds for the real exchange rate as well as the terms of trade. The current account is defined as \(CA_t = NFA_t - NFA_{t-1} / (1 + \pi_t) \) and is, therefore, zero in steady state. The steady-state target for the unemployment rates are 10.6 percent in the Home country (Germany) and 9.4 percent in the Rest of the Euro Area. These numbers refer to the harmonized unemployment rates in 2004Q4, prior to the implementation of the first reform step in 2005Q1 (Data source: OECD, Main Economic Indicators, 2017). Given these targets, we then derive the steady-state net foreign asset position, the resulting interest rate and asset shares consumed by unemployed worker in states \(k \in K \) endogenously.

As stated above, we vary the parameter of risk aversion and worker's bargaining power for a robustness check. The corresponding model responses in the appendix illustrate that that our results remain qualitatively robust to such variations.

5 The Effects of the Hartz IV Reform

In this section we describe how we implement the German Hartz IV reform on labor market in our model and present the results.

5.1 Reform implementation

As discussed detailed in the appendix, the Hartz reform was undertaken in two steps. First, in 2005, the replacement rate for long-term unemployment benefits was reduced. Furthermore, from that time onward, benefits were fixed and independent of prior earnings. In our model, we reduce the replacement rate \(r_{rl} \) by 15 percent and set \(\kappa_{BL}^t = \bar{\kappa}_{BL} = r_{rl}^{new}(1 - \bar{\tau}_w)\bar{\tau}_w \). One year later, from 2006 onward, the entitlement duration for receiving short-term unemployment benefits was reduced. On average, the entitlement duration was roughly cut by half a year, more for elderly workers and less for younger workers.\(^8\) In our model, we simulate this by setting \(\kappa_{BS}^t = \bar{\kappa}_{BL} \) for those workers who are beyond their second year of unemployment (i.e. for \(\mu_{euk}^t \) and \(k \in [7,8] \)). For an analogous simulation design, see also Gadatsch et al. (2016b). We assume that, when simulating the full reform starting in 2005, households already anticipated the cut in entitlement duration scheduled for 2006. This implies that, at the time of the reduction in replacement rate for long-term unemployed workers, households know about the upcoming cut in entitlement duration already. We also assume that, at the time of the initial policy change in 2005, the economy is in its initial steady state and that there are no future shocks in the economy after the policy change.

\(^8\) Note that the discussion on how much the replacement rate due to Hartz IV actually declined is still ongoing. Launov and Wälde (2013) use a decline of 7 percent, whereas Krebs and Schefel (2013) implement a reduction of the replacement rate for long-term unemployed workers by 20 percent. Krause and Uhlig (2012) even assume a reduction of 67 percent for high-skilled workers and around 24 percent for low skilled workers. We hence impose a conservative reduction of the replacement rate in between plausible estimates which is closest to the approach of Hochmuth et al. (2018).

\(^9\) The entitlement cut actually varied by age group and was strongest for elderly workers. For them, the entitlement duration was reduced from a maximum of 32 months to a maximum of 18 months.
In appendix C.1, we also provide an alternative simulation assuming that the reform was already anticipated beginning of 2004, as the Hartz IV reforms were decided upon in December 2003. As we can see, the medium to long-run effects are quantitatively very similar, even though our model does predict some anticipatory effects.

5.2 Results

In the following, we will split our results description into several parts. First, we will focus on the domestic (labor market) effects in Germany and, then, turn to the spillovers to the rest of the Euro Area. Furthermore, we will differentiate between describing the effects of the full reform agenda and describing the effects of the reduction in the long-term benefits. For ease of exposition, we will describe the effects of the full reform package first and, then, turn to the effects of the reduction in the replacement rate only. As we will see, there are some interesting differences and surprising similarities.

5.2.1 Effects in Germany

Figures 2 and 3 illustrate the transition after the Hartz IV reform in Germany. The reduction in the replacement rate for long-term unemployed workers only is depicted with blue shaded areas, the entire reform by the black solid line. Table 3 provides an overview of the long-run effects of both components of the Hartz IV reform in Germany and in the rest of the Euro Area. The effects are presented in percent deviations (percentage points if indicated) from the initial steady state at the beginning of 2005 (prior to the reduction in the replacement rate). As we can see in the appendix, where the full transition path is plotted, transition takes quite a while.

As expected, the reduction in the generosity of the unemployment benefit scheme leads to a decrease in wages because the workers’ bargaining position worsens resulting from the reduced fall-back utility. Lower wages increase the marginal value of a worker to firms. They post more vacancies. This augments the job-finding rate and reduces the aggregate unemployment rate. The drop in unemployment differs by duration of unemployment (as can be seen by the drop in the share of short-term unemployed by their unemployment spell denoted \(m_{ueu_k} \) in the lower middle panel of Figure 2). It is highest for long-term unemployed workers. The reason is obvious: Given a higher job finding rate, the probability to actually enter the pool of long-term unemployment declines. On aggregate, unemployment falls by around 8 percent in the medium and by 11.5 percent in the long run (see appendix C.3 and Table 3). This corresponds to a bit more than 1 percentage point.

The positive labor market effects reduce the incentive to save for precautionary reasons on the one hand because the expected duration of staying unemployed (for long) falls. On the other hand, the expected income loss when becoming unemployed is higher, which augments the need for precautionary savings. Which of these effects dominates is not clear ex ante.

Turning to the aggregate effects illustrated in Figure 3, we can see, the latter effect dominates for the full reform agenda (however, it does not for the pure reduction in long-term benefits which we will describe at the end of this subsection in more detail). As a result, Germans increase...
savings. Because the necessary assets are not fully provided domestically (being restricted by domestic government bonds and domestic capital), agents also buy international bonds. Thus, the current account increases. A reduced wage income and the increase in savings make households consume less. This also reduces imports from the rest of the Euro Area, which fosters higher net exports. In the medium to the long run, however, consumption in the Rest of the Euro Area also declines (see Figure 4 and the description below), which leads to a fall in net exports eventually.

The German savings glut increases world asset supply. Hence, the world interest rate falls on impact and only reaches a level below its initial steady state in the new long-run equilibrium. A lower interest rate makes capital investment more attractive and firms in both regions substitute capital for labor ceteris paribus. This substitution effect is stronger in the rest of the Eurozone because there is no policy-induced wage reduction to compensate for this (see Figure 4), generating a somewhat stronger decrease in unit labor costs on impact there, which explains the initial fall in the German real exchange rate vis-à-vis the Eurozone. Once wages in Germany have fallen sufficiently, however, this effect is reversed. Overall, the rise in investment in combination with the increase in employment lead to a boost in aggregate output.

If we compare the labor market effects of the entire reform package to only reducing the cut in replacement rates (Figure 2), we note that the short and medium-run effects of the entire reform package are stronger than if only the cut in the replacement rate is considered. However, along the transition path, wage effects of the full reform package are muted relative to only cutting long-term unemployment benefits. And this holds even though the cut in the long-term benefit replacement rate has a much weaker impact on the loss in the workers’ fall-back utility (ie the income in case of unemployment). This can be explained as follows.
Figure 3: Aggregate effects of the Hartz IV reform package.
When inspecting Figure 3, we see that the cut in long-term benefits actually reduces savings. The reason is that the increase in the probability of finding a job reduces the likelihood of actually falling into long-term unemployment. Reduced savings, however, do not lead to a fall in the interest rate but rather to the opposite: the interest rate increases slightly. This augments the costs of using capital in production. Thus, the incentive for firms to hire more workers instead is higher. In addition, less capital reduces the marginal productivity of labor, and wages fall more quickly. As savings barely move, we basically have no significant effect on the German net foreign asset position and its current account when taking into account only the reduction in long-term benefits.

To put our results into perspective, we can compare our long-run effects with the results from existing studies on the German Hartz IV reform. We find that the German unemployment rate falls by around 10 percent as a result of the entire reform package. The decline in unemployment is remarkably well in line with the result of Krebs and Scheffel (2013). They evaluate the reform effects in a closed-economy using a fully-fledged heterogeneous agent model with incomplete insurance and human capital formation. Also, the wage effect in our model is of similar magnitude as suggested by microeconometric evidence. For example, Price (2018) finds that mean wages fell by about 1.5 percent because of the reform. Our results are not too far from these values either. Hence, our model generates results for the domestic economy that are in line with the literature.

5.2.2 Spillover-effects to the Rest of the Euro Area

In public discussions on the Hartz reforms, Germany has been repeatedly criticized because these reforms are claimed to have fostered an increase in German international competitiveness that constitutes a beggar-thy-neighbor effect. As discussed above, this is generally not confirmed by the literature. Lower wages generating lower producer prices increase German international competitiveness, which makes it more difficult for foreign firms to sell their products. However, in the long-run, this competitiveness effect is outweighed by positive demand effects in Germany. Therefore, the literature tends to find a positive demand spillover to the rest of the Eurozone (see e.g. Gadatsch et al., 2016b, Busl and Seymen, 2013 and Vogel, 2012).

Our model simulations provide a more elaborate answer to that question. The positive demand spillovers can also be found in the short to medium term in our model (see Figure 4). Firms increase the use of capital in production because factor prices for capital have fallen. This is a result of higher savings demand in Germany and the subsequent decrease in the world interest rate. Higher capital input fosters production and increases wages because of augmented marginal productivity of labor. As there is no policy-induced wage dampening effect in the Euro Area, firms switch from producing with labor to producing with capital. Employment falls. The initial increase in employment visible in Figure 4 is a result of higher labor productivity resulting from more capital input. This effects fades out over time, however. As a result of the eventual decline in employment and lower wages in the rest of the Eurozone, aggregate income and consumption there eventually fall. To compensate for the latter, the family reduces savings (which increases consumption for about the first 15 years after the reform). While this is mitigated by
higher unemployment risk eventually, it is not strong enough to offset the savings reduction. In the medium to long-run, this also holds for output in the rest of the Eurozone (see appendix for the transition path and Table 3 for the long-run effects). Overall, our model thus predicts a beggar-thy-neighbor effect of the Hartz reforms, at least in the long term. As we can see in the appendix, the transition takes a while, and one would expect to see positive output spillovers until about 2030.

5.3 Contribution of Hartz IV to Germany’s Current Account Surplus

Figure 5 depicts the share of Germany’s current account relative to GDP that can be explained by the labor market reform. It shows the quarterly current account effects generated by our model simulations as share of the actual quarterly current account developments in the data for the years 2005 to 2016 (the data is retrieved from Eurostat; we seasonally adjusted the quarterly data using X12-Arima). Over the entire time span since the reform, the German Hartz IV reform has contributed by around 10 to 15 percent of the current account developments.10 The German current account relative to GDP was 4.8 percent in the first quarter of 2005 and climbed to around 8 percent by the end of 2016. Of this increase by 3.2 percentage points, the Hartz IV reforms are responsible for about 0.34 percentage points according to our model simulations. The Hartz IV reforms still explain a (decreasing) share of around 7 percent each quarter today.

10 Note that the inclusion of adjustment costs does not drive our results, which is especially true for the current account. In appendix C, we compare the model responses with and without adjustment costs.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Percent deviations from initial SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>Aggregates</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>1.16</td>
</tr>
<tr>
<td>Consumption</td>
<td>2.96</td>
</tr>
<tr>
<td>Savings</td>
<td>15.91</td>
</tr>
<tr>
<td>NFA in percent of GDP</td>
<td>63.32</td>
</tr>
<tr>
<td>Labor market</td>
<td></td>
</tr>
<tr>
<td>Wages</td>
<td>-2.33</td>
</tr>
<tr>
<td>Vacancies</td>
<td>14.07</td>
</tr>
<tr>
<td>Job-finding Rate</td>
<td>12.82</td>
</tr>
<tr>
<td>Unemployment Rate</td>
<td>-11.51</td>
</tr>
<tr>
<td>Share of unemployed in period 1</td>
<td>-0.17</td>
</tr>
<tr>
<td>Share of unemployed in period 2</td>
<td>-3.92</td>
</tr>
<tr>
<td>Share of unemployed in period 3</td>
<td>-8.70</td>
</tr>
<tr>
<td>Share of long-term unemployed</td>
<td>-20.10</td>
</tr>
<tr>
<td>Consumption</td>
<td></td>
</tr>
<tr>
<td>C. of employed</td>
<td>2.52</td>
</tr>
<tr>
<td>C. of unemployed in period 1</td>
<td>5.05</td>
</tr>
<tr>
<td>C. of unemployed in period 2</td>
<td>3.06</td>
</tr>
<tr>
<td>C. of unemployed in period 3</td>
<td>0.46</td>
</tr>
<tr>
<td>C. of long-term unemployed</td>
<td>-15.00</td>
</tr>
<tr>
<td>Rest of the Euro Area</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>-0.06</td>
</tr>
<tr>
<td>Consumption</td>
<td>-3.78</td>
</tr>
<tr>
<td>Savings</td>
<td>-4.97</td>
</tr>
<tr>
<td>Unemployment Rate</td>
<td>1.24</td>
</tr>
<tr>
<td>Wages</td>
<td>-1.56</td>
</tr>
</tbody>
</table>

Table 3: Long-run effects of Hartz IV: Total and by reform step

![Fraction of CA development explained by Hartz IV](image)

Figure 5: Contribution of Hartz IV to CA surplus
6 Comparison to the Representative Agent Framework

In the previous sections, we showed that including a precautionary savings motive into an otherwise standard two-region RBC model causes the net foreign asset position to increase permanently if unemployment benefits are reduced. But how important is this precautionary savings motive? To answer this question, we also simulate a representative agent version of our model, skipping the assumption that unemployed workers have to leave the family. In this setting, workers are again perfectly insured against the idiosyncratic risk of becoming unemployment because they all consume the same, independent of their employment status (as in Andolfatto, 1996 and Merz, 1995).

To ensure stationarity of net foreign assets, we follow the proposition of Schmitt-Grohe and Uribe (2003) and assume a risk premium on international bonds that increases with the country’s net foreign asset position. More precisely, the interest rate paid or received by investors is now given by $R_t = e^{-\psi(NFA_t - \bar{NFA})}$, where ϕ is set to 0.01 (see also Gadatsch et al. 2016b).

The differences of these modelling assumptions become clear in Figure 6. By construction, the incentive to hold precautionary savings is zero in the representative agent framework. Savings even decrease slightly in response to the reform. That is because the labor market reform generates expansionary effects due to the rise in employment caused by lower wages. The importance of the precautionary savings motive for the reaction in output can be seen in Figure 6. The decline in savings leads to a small and short-lived fall in the current account balance and the net foreign asset position. This confirms our prediction that as long as households are perfectly insured against the risk of becoming unemployed, a drop in the replacement rate and a cut in the entitlement duration has hardly any effect on the current account.
7 Concluding Remarks

In this paper, we have build a two-region RBC model with labor market frictions and incomplete insurance to study the effects of labor market reforms on global imbalances. We have shown that, by the introduction of a first-order precautionary savings motive and limited cross-sectional heterogeneity, we can circumvent the problem of steady-state indeterminacy and non-stationarity of net foreign assets present in traditional macro models. In our model, changes to the conventional RBC setup are not large and the model is still tractable.

Applying our model to simulate the far-reaching unemployment benefit reform in Germany (Hartz IV), we find that the reduction in the generosity of the unemployment insurance scheme indeed increases precautionary savings significantly. Because not all of these additional savings can be invested domestically, the net foreign asset position and the current account increase, much more than what a representative agent model would generate. Because of these international capital flows and capital adjustments in production, our model simulations also identify a small negative spillover of the Hartz IV reforms to the rest of the Eurozone, at least in the long run. The standard representative agent model would predict a positive spillover due to the demand effects. Because of the long transition from the pre-reform steady state to the final one, we also find positive demand spillovers in our model over the short to medium turn. These fade out over time, however.

References

THE ECONOMIST (2017a): “The good and bad in Germany’s economic model are strongly linked,” July 8th 2017.

A Background

This section briefly outlines the background on Germany’s current account and its net foreign asset position. We also summarize the main points of the cluster of labor market reforms which were implemented in Germany between 2003 and 2005, the so-called Hartz-reforms.

A.1 The German Current Account and Net Foreign Asset Position

The current account is defined as a country’s increase in domestic net claims on foreign incomes or outputs (see Obstfeld and Rogoff 1995). Hence, the current account balance is given by the difference between national savings and domestic investment. If savings exceed investment, residents hold claims on foreign goods or assets.

Figure 7 shows the German unemployment rate, the evolution of the German current account (\(CA\)) balance, the net foreign asset position (\(NFA\)), exports (\(EX\)) and imports (\(IM\)) as well as the savings (S)-investment (I) balance (in percent of GDP) from 1991 onwards. Between 1991 and the early 2000s, a decade that was characterized by high unemployment rates and low GDP growth, Germany has repeatedly been called ‘the sick man of Europe’ (see for example The Economist 2017a). Even though Germany had current account surpluses prior to the German Reunification of around 4 percent of GDP (see Figure 8), in the time between 1991 and 2000, there were no imbalances worth mentioning. However, starting in 2001, the German economy experienced a complete reversal: International competitiveness rose and exports started to persistently exceed imports. In addition, savings and investment diverged dramatically. By the simplified identity of the current account, \(CA = EX - IM = S - I\), this implies large current account surpluses and an increasing net foreign asset position. In fact, Germany’s NFA position reached a level of 51 percent of GDP in 2016 and, therefore, makes the country a big net lender. These imbalances have been subject to worldwide criticism (see, for example, Eichengreen’s comment in The Guardian 2017, and The Economist 2017b).

A.2 The Hartz Reforms

Germany’s bad economic performance around the 2000s motivated a comprehensive reform package. The centrepiece of the reform agenda was a set of extensive labour market reforms, commonly known as the “Hartz reforms” (for a detailed description of the Hartz reforms, see Jacobi and Kluve 2006). Their objectives were to improve job matching efficiency and incentives to take up employment (Hartz I), promote the transition to self-employment and introduce more flexible arrangements for minor employment relationships (Hartz II), further support the matching process between firms and workers through a reorganisation of the Federal Labour Agency (Hartz III).

In 2005, the farthest-reaching and most discussed Hartz IV reform was implemented with the aim to reduce workers’ reservation wages and increase labor supply. Prior to Hartz IV, short-term unemployed workers were entitled to unemployment benefits of 60 percent of their previous net

\[11\] Interestingly, the reversal of the German unemployment rate started several years after. Beginning in 2005, unemployment halved from around 12 percent to 6 percent in 2016, and it is currently still falling.
Note: Exports and Imports refer to both goods and services. Savings refer to gross savings and are defined as disposable income minus consumption and net transfers. Data Sources: German National Statistical Office (2017) and Bundesbank (2017).

Figure 7: The German Current Account, Savings and Investment, Exports and Imports

Note: Data Sources: The World Bank, World development indicators.

Figure 8: The German Current Account, 1971-2016
wage ("Arbeitslosengeld"). Short-term unemployment benefits expired after three years on average. Unemployed workers were then considered long-term unemployed and received a less generous unemployment benefit ("Arbeitslosenhilfe") amounting to 53 percent of their previously earned net wage. For unemployed workers with children, the replacement rates were 67 and 57 percent, respectively. Persons who were not eligible for unemployment benefits received means-tested social assistance ("Sozialhilfe"; in 2004, the standard rate for a single household was around 300 euros, not including one-time benefits).

The Hartz IV reform had two components: First, social assistance and long-term unemployment benefits were merged into the purely means-tested "Arbeitslosengeld II" (ALG II). Hence, from 2005 onwards, long-term unemployment benefits were independent of previous earnings. Second, the entitlement duration of short-term unemployment benefits was reduced from around three years to approximately twelve months. The entitlement duration depends on the age of the unemployed worker. The maximum duration of one year refers to workers younger than 45 years. Older unemployed were entitled to 18 months of ALG II. In 2008, the maximum duration for older workers was softened again to a maximum entitlement duration of 24 months. The policy change became effective 2006. For many, these reforms were an important driver of the increase in the German competitiveness and its current account surplus.

B Micro-evidence on Wealth by Employment Status

We use data of the IAB Panel Study Labour Market and Social Security (PASS)12 to answer the following questions: How much wealth do recently unemployed people have at the beginning of their unemployment spell? How does the level of wealth evolve during unemployment? For this purpose, we use the survey question on the amount of savings of a household.13 Savings refer to wealth in the form of savings accounts, shares or life insurance, while housing is explicitly excluded. The descriptive statistics of household wealth by employment status of the interviewed person (usually the main earner) are illustrated in Figure 9. A median employed household owns between 1.000 and 9.999 euros of wealth, while a household with a short-term unemployed household head owns less than 1.000 euros. A median household with long-term unemployed member (receiving the less generous unemployment benefits, ALG2) have on average no wealth at all. Hence, households with an unemployed main earner have significantly less wealth compared to an average employed household. A closer look at the distribution of wealth by the duration of short-term unemployment (see Figure 10) reveals further insights: First, at the beginning of an unemployment spell, the wealth level is higher and decreases (almost) continuously over the short-term unemployment spell. Note that these descriptives are restricted to workers below the age of 50 who are eligible for at most twelve months of short-term unem-

12 The IAB PASS survey was first carried out in 2007 and consists currently of ten waves. Each wave consists of approximately 10,000 households. Its focus lies on the circumstances and characteristics of recipients of Unemployment Benefit II (ALGII). For a detailed description of the IAB PASS survey, see Trappmann et al. (2013). Data access was provided via a Scientific Use File supplied by the Research Data Centre (FDZ) of the German Federal Employment Agency (BA) at the Institute for Employment Research (IAB).

13 The answers can be one of the following categories: no wealth, less than 1.000 euros, 1.000-2.499 euros, 2.500-4.999 euros, 5.000-9.999 euros, 10.000-19.999 euros, 20.000-49.999 euros and more than 50.000 euros.
Employment benefits (older workers may receive ALG 1 for up to 24 months). However, there is a discontinuity (from the 6th to the 10th month) which is due to a composition effect of workers: In order to be eligible for the entire 12 months of ALG 1, one must have had a job subject to social security contributions for at least 24 continuous months, otherwise the eligibility is reduced. Therefore, a fraction of workers can fall into the pool of long-term unemployed after six months already. Figure 10 shows that a worker at the beginning of the unemployment spell has more wealth than a worker after receiving 12 month of short-term unemployment benefits. Note that this picture is purely descriptive and we do not control for worker characteristics, therefore part of the picture is driven by composition effects: richer workers (who are most likely better educated) find a job quicker and return to the pool of employed workers. In addition, the IAB PASS survey contains a question whether the household has lived off his savings during the main earners unemployment spell (prior to receiving long-term unemployment benefits). This question was answered affirmatively by 10.21 percent of ALG2 recipients.

Figure 9: Wealth by Employment Status
C Further results

In this section, we discuss the role of anticipation effects, the role of wage and investment adjustment costs and show the transition path for the long run.

C.1 Anticipatory Effects

As we can see in Figure 11, assuming that the Hartz IV reform was already anticipated one year prior to its implementation indeed generates some frontloading of the effects. For example, wages already start to fall in 2003, and so does consumption. Output, investment and net foreign assets start to increase. However, the differences are minor and there are no significant qualitative changes.
C.2 The Role of Adjustment Costs

Figure 12 compares the model’s responses without adjustment costs in wages and capital (dashed line) to our baseline model (solid line). Unsurprisingly, the inclusion of adjustment costs leads to a dampened effect on wages and hence unemployment in the short and medium run. In the medium to long run, however, the drop in unemployment in Germany is of similar size (actually, in the very long run, i.e., the steady state, they are the same). With respect to savings and the building up of the current account, the model responses hardly differ. Therefore, our results on the contribution of the German labor market reform on the current account are quantitatively robust. Furthermore, spillover effects with respect to output are higher in the short-run if it is costly to adjust wages and capital. In the long-run, however, negative output effects are more pronounced than in the baseline case.

C.3 Long-run Effects

Here, we plot the analogous figures for the transitional dynamics already shown in the main text. However, as they only range until 2030 in the main text, we show them until 2100 here. As claimed in the main text, the transition indeed take quite a while.

D Sensitivity Analysis

To check for the robustness of our results, we vary two potentially crucial model parameters, the parameter of relative risk aversion (σ_c) and worker’s bargaining power (χ). Figure 16 illustrates
Figure 12: The effect of adjustment costs

Figure 13: Long-run effects of the Hartz IV reform package on labor market outcomes.
Figure 14: Long-run aggregate effects of the Hartz IV reform package.

Figure 15: Long-run effects of the Hartz IV reform package on the Rest of the EMU.
the model response to setting σ_c to 1.5 and hence lower than our baseline value of 2. Interestingly, for a lower value of risk aversion, the increase in savings and hence net foreign assets is slightly stronger than in the baseline version. The reason is the dampened reaction of the job-finding rate and as a result unemployment. As the overall reduction in unemployment is muted, the incentive to hold savings is slightly stronger.

The same is true if we lower worker’s bargaining power to $\chi = 0.4$ (also depicted in Figure 16). Compared to our baseline case, where worker and firms have equal bargaining power, a lower bargaining power of workers $\chi=0.4$ dampens the effects on the net foreign asset position. On the other hand, if the bargaining power of worker is higher ($\chi=0.6$) the net foreign asset position increases slightly more. We conclude, that our results are qualitatively robust. Quantitatively, our baseline specification leads to a slightly stronger decline in unemployment (the size of this effect is comparable to other studies in the closed economy framework, however), but more conservative results regarding the increase in the net foreign asset position.