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Abstract

In a large class of linear-quadratic models with rational expectations, the com-

mitment solution can be implemented by a policy-maker who acts purely un-

der discretion. To show this, we construct discretionary equilibria with payoff-

irrelevant state variables. These additional state variables are constructed in a

way such that the policy-maker finds it impossible to renege on past promises.

On the equilibrium path, the state variables are identical to the Lagrange multi-

pliers associated with the constraints for the non-predetermined variables in the

corresponding commitment problem.
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1 Introduction

This paper shows that, for the large class of linear models with rational expectations

considered by Blanchard and Kahn (1980) and a quadratic objective function of the

policy-maker, the commitment solution can also be implemented by a policy-maker

under discretion, i.e. a policy-maker that cannot commit to a specific future behavior

but chooses its instrument optimally every period, taking its own future behavior

as given.1, 2 Hence the social losses stemming from the time-inconsistency problem in

models where current economic variables depend on expectations about future variables

can be avoided.3

The key to this result is to consider discretionary equilibria that are not Markov-perfect

but where all agents including the policy-maker respond to additional state variables

that, on the equilibrium path, are identical to the Lagrange multipliers associated with

the constraints for the non-predetermined (or forward-looking) variables in the corre-

sponding problem under commitment.4 As is well-known, when Markov-perfection is

imposed, a discretionary policy-maker typically cannot make credible promises to set

non-predetermined variables in the future to the values implied by the commitment

solution because the policy-maker will later find it optimal to deviate. In the dis-

cretionary equilibria constructed in this paper, the policy-maker can credibly promise

to set these variables in line with the commitment solution because, in every period,

the policy-maker is unable to influence current non-predetermined variables. This is

achieved by introducing the additional state variables in a way such that the direct

effect of a change in the instrument on the non-predetermined variables is exactly offset

by a change in the expectations about future non-predetermined variables. Effectively,

this procedure turns non-predetermined variables into predetermined (or backward-

looking) ones.

Potential gains from commitment have been identified in the classic literature on the

inflation bias (Kydland and Prescott, 1977; Barro and Gordon, 1983). Kydland and

Prescott (1977) and Stokey (1989) demonstrate the time-inconsistency of optimal gov-

ernment policies in other fields like taxation or patent protection. In the standard new

1The discretionary solution and the commitment solution have been analyzed in Oudiz and Sachs
(1985), Backus and Driffill (1986), Currie and Levine (1993), and Söderlind (1999).

2Waki et al. (2018) consider the optimal degree of discretion in a framework where society imposes
dynamic constraints on the policy-maker.

3How the commitment solution of such models can be obtained via a recursive saddle-point func-
tional equation is shown by Marcet and Marimon (2019).

4Responding to payoff-irrelevant variables can be optimal in linear-quadratic models of discre-
tionary policy-making if current economic variables depend on expectations about future economic
variables and if the payoff-irrelevant variables are defined recursively (Hahn, 2019).
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Keynesian model, another time-inconsistency problem arises, the so-called stabiliza-

tion bias (Clarida et al., 1999; Woodford, 1999). Papers that aim to quantify the gains

from commitment for central banks find that they are potentially sizable (Dennis and

Söderström, 2006; Levine et al., 2008). As a consequence, it is important to answer

the question how the gains from commitment can be achieved.

A recent paper by Debortoli et al. (2018) assumes that the central bank can implement

the commitment solution for a given loss function that captures a specific mandate.

Debortoli et al. (2014) and Debortoli and Lakdawala (2016) find empirical evidence

that the Federal Reserve operates with a high degree of commitment. These papers

leave open the question how central banks can implement the commitment solution.

The present paper lays out such a mechanism.

A related paper by Hahn (2019) shows the existence of non-Markov-perfect discre-

tionary equilibria and points out the potential for them to be welfare enhancing. In

contrast with the present paper, Hahn (2019) focuses exclusively on the canonical new

Keynesian model. Moreover, for the class of equilibria considered by Hahn (2019), a dis-

cretionary central bank can never implement the optimal commitment solution. Blake

and Kirsanova (2012) demonstrate the existence of multiple discretionary Markov-

perfect equilibria in linear-quadratic models with rational expectations and endogenous

state variables. They obtain unique equilibria in the absence of endogenous predeter-

mined state variables. This does not contradict the implication of our approach that, in

addition to the standard discretionary equilibrium, a discretionary equilibrium imple-

menting the commitment solution exists in this case, as they consider Markov-perfect

discretionary equilibria, whereas we consider discretionary equilibria where economic

agents also respond to payoff-irrelevant state variables.

Alternatively, reputation-building can be modeled with the help of the sustainable

equilibrium concept (Chari and Kehoe, 1990, 1993), which also relies on strategies

that violate the Markov property. Compared to the sustainable-equilibrium concept,

the discretionary equilibrium allows only for one-shot deviations by the policy-maker in

each period rather than deviations which specify policies for all possible future histories.

One advantage of the approach followed in this paper is that it highlights the parallels to

the commitment solution and, in particular, that it allows for an intuitive interpretation

of the additional state variables as Lagrange multipliers of the commitment solution.

The present analysis may also be reminiscent of the Folk theorem, which implies that for

infinitely repeated games all individually rational payoff combinations can be achieved
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for sufficiently high discount factors (see Fudenberg and Maskin (1986) for one particu-

lar variant of the Folk theorem). Abreu et al. (1986, 1990) introduce a method to study

reputation in infinitely repeated games that focuses on sets of continuation values as

opposed to strategies. In contrast with these analyses, we do not consider infinitely

repeated stage games, as the periods in our paper are connected via forward-looking

and backward-looking variables.

This paper is organized as follows. In Section 2, we illustrate the main mechanism

behind our result with the help of the canonical new Keynesian model. The imple-

mentability of the commitment solution by a discretionary policy-maker is demon-

strated in Section 3 for a large class of linear-quadratic models with rational expecta-

tions. Section 4 concludes.

2 Simple New Keynesian Model

2.1 Framework

To show the main mechanism behind our general result, we first use the simple new

Keynesian model as our workhorse (Clarida et al., 1999). In every period 𝑡 = 0, 1, 2, ...,

the private sector’s behavior is summarized by

𝜋𝑡 = 𝛽E𝑡𝜋𝑡+1 + 𝜅𝑢𝑡 + 𝜉𝑡, (1)

𝜉𝑡+1 = 𝜌𝜉𝑡 + 𝜀𝑡+1, (2)

where 𝛽 ∈ (0, 1) is a common discount factor, 𝜅 > 0, 𝜌 ∈ (0, 1), and the 𝜀𝑡’s are i.i.d.

shocks that are drawn from a normal distribution with mean zero. 𝜋𝑡 is the inflation

rate and 𝑢𝑡 the output gap. Equation (1) is the new Keynesian Phillips curve and (2)

describes the evolution of markup shocks. The initial value of 𝜉𝑡, 𝜉0, is exogenously

given. Taking (1) and (2) into account, the central bank minimizes the expected

discounted sum of losses

𝑙(𝜋𝑡, 𝑢𝑡) =
1

2
𝜋2
𝑡 +

𝑎

2
𝑢2
𝑡 (3)

with parameter 𝑎 (𝑎 > 0). Adding a new Keynesian IS curve to the model would not

affect our results. In our set-up, 𝑢𝑡 constitutes the central bank’s instrument. 𝜋𝑡 is a

forward-looking or non-predetermined variable. 𝜉𝑡 is a predetermined variable.5

5The definitions of predetermined variables and non-predetermined variables are in line with Backus
and Driffill (1986) and Söderlind (1999).
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2.2 Optimal Commitment

We first construct the optimal commitment solution, which enables us to show later

how a discretionary policy-maker can achieve this solution. The optimal commitment

solution can be obtained by setting up the Lagrangian

ℒ0 = E0

∞∑︁
𝑡=0

𝛽𝑡

(︂
1

2
𝜋2
𝑡 +

𝑎

2
𝑢2
𝑡 + 𝜆𝑡+1

(︀
𝛽−1𝜋𝑡 − 𝜋𝑡+1 − 𝜅𝛽−1𝑢𝑡 − 𝛽−1𝜉𝑡

)︀)︂
, (4)

where 𝜆𝑡 (𝑡 = 1, 2, ...) are the multipliers associated with the new Keynesian Phillips

curve.

As is well-known (Clarida et al., 1999; Woodford, 1999), the commitment solution can

be characterized by

𝑢𝑡+1 − 𝑢𝑡 = −𝜅

𝑎
𝜋𝑡+1 for t=0,1,2,... (5)

𝑢0 = −𝜅

𝑎
𝜋0 (6)

together with (1) and (2).

In line with Backus and Driffill (1986) and Söderlind (1999), the commitment solution

can be described by equations that specify the joint evolution of 𝜉𝑡 and 𝜆𝑡 as well as

by equations that state how the non-predetermined variable 𝜋𝑡 and the instrument 𝑢𝑡

depend on the current values of 𝜉𝑡 and 𝜆𝑡. With the help of the optimal commitment

solution in Clarida et al. (1999), it is straightforward to show that, for the simple new

Keynesian model under consideration, these equations are(︃
𝜉𝑡+1

𝜆𝑡+1

)︃
=

(︃
𝜌 0

− 𝛽𝛿
1−𝛿𝛽𝜌

𝛿

)︃(︃
𝜉𝑡

𝜆𝑡

)︃
+

(︃
𝜀𝑡+1

0

)︃
, (7)

where

𝛿 =
1 + 𝛽 + 𝜅2

𝑎
−
√︁

(1 − 𝛽)2 + 2(1 + 𝛽)𝜅
2

𝑎
+ 𝜅4

𝑎2

2𝛽
∈ (0, 1), (8)

as well as (︃
𝜋𝑡

𝑢𝑡

)︃
=

(︃
𝛿

1−𝛿𝛽𝜌
1−𝛿
𝛽

− 𝜅𝛿
𝑎(1−𝛿𝛽𝜌)

𝜅𝛿
𝑎𝛽

)︃(︃
𝜉𝑡

𝜆𝑡

)︃
. (9)

For exogenous values of 𝜉0 and 𝜆0 = 0, (7) and (9) describe the entire dynamics of the

system.
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Loosely speaking, equation (7) can be interpreted as introducing a new predetermined

state variable in addition to 𝜉𝑡: the Lagrange multiplier on the forward-looking con-

straint, 𝜆𝑡. In the subsequent subsection, we show that a policy-maker acting under

discretion may optimally respond to both variables 𝜉𝑡 and 𝜆𝑡 in the same way as under

commitment.

2.3 Discretionary Policy-Making

Abandoning the restriction to Markov-perfect strategies, we now construct a particular

discretionary equilibrium, which implements the commitment solution. This equilib-

rium involves an additional state variable that, on the equilibrium path, equals the

Lagrange multiplier in the commitment solution. While we consider this property of

the additional state variable to be a desirable feature of our construction, as the ad-

ditional state variable can be interpreted as the burden of “promises” made in the

past, there are also discretionary equilibria implementing the commitment solution,

for which this property does not hold.6 It may also be noteworthy that additional

non-Markovian discretionary equilibria exist in this framework that do not implement

the commitment solution (see Hahn (2019)).

As a first step, we introduce a general law of motion for the additional state variable 𝑠𝑡.

The dynamics of 𝑠𝑡 are described by

𝑠𝑡+1 = 𝜑𝜉𝜉𝑡 + 𝜑𝑠𝑠𝑡 + 𝜑𝑢𝑢𝑡 (10)

with a given initial value 𝑠0. For payoff-relevant state variables, the coefficients in the

law of motion are typically exogenously given. In the case under consideration, the

𝜑’s are arbitrary coefficients, which will be pinned down later. The flexibility with

which the additional state variable can be introduced may be reminiscent of sunspots

(see Cass and Shell (1983) for a seminal contribution). A major difference between

the two concepts is the fact that sunspot variables are exogenous stochastic processes,

whereas the state variable that we introduce is endogenous and can be influenced by

the policy-maker, in particular.

6In particular, one can show that, for any 𝜁0 ∈ R, 𝜁1 ∈ R ∖ {0}, a non-Markovian discretionary
equilibrium implementing the commitment solution exists with an additional payoff-irrelevant state
variable that is equal to 𝜁0𝜉𝑡 + 𝜁1𝜆𝑡 on the equilibrium path.
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We make use of this flexibility and set 𝑠0 = 0 as well as

𝜑𝑢 = − 𝜅

1 − 𝛿
, (11)

𝜑𝜉 = − 1

1 − 𝛿𝛽𝜌
, (12)

𝜑𝑠 =
1

𝛽
. (13)

Why we choose these particular values will be explained in Section 2.4.

The following lemma implies that the commitment solution of the standard new Key-

nesian model can be implemented via a discretionary equilibrium:

Lemma 1. Consider a central bank with instrument 𝑢𝑡, loss function (3), and discount

factor 𝛽, who faces the constraints (1), (2), as well as the following law of motion for

the payoff-irrelevant state variable 𝑠𝑡:

𝑠𝑡+1 =
1

𝛽
𝑠𝑡 −

1

1 − 𝛿𝛽𝜌
𝜉𝑡 −

𝜅

1 − 𝛿
𝑢𝑡, with 𝑠0 = 0. (14)

Then (︃
𝜋𝑡

𝑢𝑡

)︃
=

(︃
𝛿

1−𝛿𝛽𝜌
1−𝛿
𝛽

− 𝜅𝛿
𝑎(1−𝛿𝛽𝜌)

𝜅𝛿
𝑎𝛽

)︃(︃
𝜉𝑡

𝑠𝑡

)︃
(15)

describes a discretionary equilibrium. This equilibrium implements the commitment

solution.

Proof As a preliminary step, we note that the dynamics of 𝜋𝑡 and 𝑢𝑡 equal those in

the commitment solution. This can be seen by comparing (14) and (15) to (7) and (9).

In particular, plugging the expression for 𝑢𝑡 given in (15) into (14) yields an expression

for 𝑠𝑡+1 as a function of 𝜉𝑡 and 𝑠𝑡. With the help of (8) as well as 𝑠0 = 𝜆0 = 0, it is

straightforward to show that this equation for 𝑠𝑡+1 yields dynamics for the additional

state variable 𝑠𝑡 that are identical to the dynamics for the Lagrange multiplier in the

commitment solution, which are described by (7).

To show that (15) describes a discretionary equilibrium, we have to show that, first,

together with (2) and (14), it is compatible with the Phillips curve (1) and that, second,

the central bank’s choice of 𝑢𝑡 in every period 𝑡 is optimal subject to the new Keynesian

Phillips curve in this period 𝑡, given the rational inflation expectations E𝑡𝜋𝑡+1 that are

formed in line with (2), (14), and (15).
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The candidate equilibrium is compatible with the new Keynesian Phillips, because (i)

the economy evolves as in the commitment solution and (ii) the commitment solution

satisfies the new Keynesian Phillips curve. To show that the central bank behaves

optimally requires a few steps. First, we calculate inflation expectations as they enter

the new Keynesian Phillips curve, which represents a constraint for the central bank.

Using (14) and (15), we obtain the following expression:

E𝑡𝜋𝑡+1 =
1

1 − 𝛿𝛽𝜌

(︂
𝛿𝜌− 1 − 𝛿

𝛽

)︂
𝜉𝑡 +

1 − 𝛿

𝛽2
𝑠𝑡 −

𝜅

𝛽
𝑢𝑡. (16)

As we will see later, it is crucial that inflation expectations are a function of 𝑢𝑡. This

feature stems from the fact that the central bank’s choice of 𝑢𝑡 affects 𝑠𝑡+1, which in

turn affects inflation in period 𝑡 + 1.

As a next step, we plug the inflation expectations (16) into the new Keynesian Phillips

curve (1) and obtain:

𝜋𝑡 =
𝛿

1 − 𝛿𝛽𝜌
𝜉𝑡 +

1 − 𝛿

𝛽
𝑠𝑡. (17)

It is noteworthy that the central bank’s choice of 𝑢𝑡, has no influence on inflation in the

same period. This has been achieved by a particular choice of 𝜑𝑢, as will be explained

in Section 2.4.

Consider optimal central-bank behavior in a particular period 𝑡. For this purpose, we

set up the corresponding Bellman equation:

𝑊 (𝜉𝑡, 𝑠𝑡) = min
𝑢𝑡

{︂
1

2
𝜋2
𝑡 +

𝑎

2
𝑢2
𝑡 + 𝛽E𝑡𝑊 (𝜉𝑡+1, 𝑠𝑡+1)

}︂
subject to (2), (17).

(18)

We obtain the following first-order condition as well as a condition that results from

the envelope theorem:

0 = 𝑎𝑢𝑡 −
𝜅

1 − 𝛿
𝛽E𝑡𝑊𝑠(𝜉𝑡+1, 𝑠𝑡+1), (19)

𝑊𝑠(𝜉𝑡, 𝑠𝑡) =
1 − 𝛿

𝛽
𝜋𝑡 + E𝑡𝑊𝑠(𝜉𝑡+1, 𝑠𝑡+1) (20)

Equations (19) and (20) can be combined to

E𝑡𝑢𝑡+1 − 𝑢𝑡 = −𝜅

𝑎
E𝑡𝜋𝑡+1 for t=0,1,2,... (21)
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This condition characterizes optimal central-bank behavior in the candidate discre-

tionary equilibrium. As the paths of 𝜋𝑡 and 𝑢𝑡 satisfy the condition for optimal central-

bank behavior under commitment, (5), they also satisfy (21).

It may be noteworthy that, in the discretionary equilibrium under consideration, there

is no separate condition for period 0 as opposed to the commitment solution, which

involves a special condition for this period, equation (6). However, it is clear that (6)

is satisfied also in the discretionary equilibrium.

One might ask whether the discretionary equilibrium specified in Lemma 1 is the

only equilibrium for the new Keynesian model with the additional state variable 𝑠𝑡,

introduced by (14). This is not the case. The standard Markov-perfect discretionary

equilibrium would also correspond to an equilibrium of the economy with the additional

state variable 𝑠𝑡. In this equilibrium, 𝑢𝑡 and 𝜋𝑡 would not be affected by the value of 𝑠𝑡.

Söderlind (1999) presents matlab routines that can be used to compute discretionary

equilibria and optimal solutions under commitment. Experiments with the simple

new Keynesian model with additional state variable 𝑠𝑡 suggest that the algorithm

for discretionary policy-making converges to the additional discretionary equilibrium

that implements the commitment solution, provided that starting values close to the

respective equilibrium values are used. In other cases, the algorithm converges to the

equilibrium where the additional state variable 𝑠𝑡 does not affect the dynamics of 𝜋𝑡

and 𝑢𝑡.

Finally, one might wonder whether a discretionary policy-maker could also implement

the policy that is optimal from a timeless perspective (Woodford, 1999). The timeless-

perspective solution is identical to the commitment solution but imposes (5) rather than

(6) also in the initial period. A discretionary policy-maker could easily implement this

solution for the appropriate initial value 𝑠0.

2.4 Interpretation

It may be instructive to explain how the parameter choices for the law of motion for 𝑠𝑡

were made and why these choices enable the commitment solution to be implemented.

In the Markov-perfect equilibrium of the standard new Keynesian model, there is no

endogenous state variable, and inflation in all periods is only a function of the exogenous

state variable 𝜉𝑡. Hence inflation expectations E𝑡𝜋𝑡+1 cannot be influenced by the

central bank’s choice of 𝑢𝑡, as 𝜉𝑡+1 is exogenous to monetary policy. Together with

this observation, the Phillips curve (1) implies that an increase in 𝑢𝑡 affects inflation
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only via the traditional marginal-cost channel, where an increase of 𝑢𝑡 by ∆𝑢 entails

an increase in inflation by 𝜅∆𝑢.

In a discretionary equilibrium that violates the Markov property, changes in the instru-

ment 𝑢𝑡 may lead to changes in inflation expectations because changes in 𝑢𝑡 influence

an additional, endogenous state variable, which, in turn, affects inflation expecta-

tions. Thus the central bank can affect current inflation 𝜋𝑡 not only via the traditional

marginal cost channel, which we have described above, but also via an expectations

channel. The particular choice of 𝜑𝑢 in (11) guarantees that the effects of a change

in 𝑢𝑡 on inflation via the marginal-cost channel and the expectations channel exactly

offset each other. As a consequence, inflation 𝜋𝑡 has effectively become a predetermined

variable, which cannot be influenced by the central bank’s choice in period 𝑡 (see (17)).

This observation is key to understanding how the discretionary equilibrium under con-

sideration implements the commitment solution. Intuitively, a discretionary policy-

maker cannot implement the commitment solution in a Markov-perfect equilibrium of

the simple new Keynesian model because, in every period 𝑡, it cannot make a binding

commitment about inflation in period 𝑡 + 1. In period 𝑡 + 1, the policy-maker will

always succumb to the temptation to select the inflation rate that is optimal from

the perspective of period 𝑡 + 1. In the non-Markov-perfect equilibrium that we have

constructed, the central bank does not renege on past promises because it cannot do

so.

The parameter choices for 𝜑𝜉 and 𝜑𝑠 were made in a way such that the evolution of

the variables 𝜋𝑡, 𝑢𝑡, and 𝑠𝑡 equals the evolution of the corresponding variables 𝜋𝑡, 𝑢𝑡,

and 𝜆𝑡 in the commitment solution. The choice of 𝑠0 = 0 ensures 𝜆0 = 𝑠0.

2.5 Dynamic Response to Policy Errors

We continue our discussion of the standard new Keynesian model by illustrating the

dynamics of the economy if the central bank deviates from its optimal choice of 𝑢𝑡 in

period 0 but not in future periods. We set the parameters as follows: 𝜅 = 0.3, 𝛽 = 0.99,

𝜌 = 0.9, 𝑎 = 0.05, and 𝜉0 = 0, in addition to 𝑠0 = 0. Moreover, assume that the central

bank chooses 𝑢0 = 1 rather than 𝑢0 = 0, which would be optimal.

Figure 1 illustrates the dynamics of the system in the absence of markup shocks 𝜉𝑡,

i.e. for 𝜀𝑡 = 0 in 𝑡 = 1, 2, 3, .... The deviation of the central bank cannot influence

inflation (displayed as a solid line) in period 0, as the discretionary equilibrium under

consideration involves that inflation is effectively predetermined. According to the
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Figure 1: Impulse responses of inflation (solid line), the output gap (dashed line), and
the additional state variable 𝑠𝑡 (dash-dotted line) in response to a one-time deviation
of the output gap. Markup shocks have been set to zero in all periods.

dash-dotted line, which displays 𝑠𝑡, the suboptimally high level of 𝑢0 drives 𝑠1 below

zero (compare (10) and (11)). Because 𝑠𝑡+1 depends positively on 𝑠𝑡 on the equilibrium

path (𝑠𝑡+1 = 𝛿𝑠𝑡), 𝑠𝑡 stays negative in the consecutive periods 𝑡 = 2, 3, ... As inflation

and output are increasing functions of 𝑠𝑡 (compare (9) for 𝑠𝑡 = 𝜆𝑡), both output and

inflation are negative from period 1 onward.

The figure shows that deviations from the equilibrium behavior in a particular period

lead to changes in the additional state variable 𝑠 in future periods and thereby to

changes in losses in these periods. It may be interesting to contrast the consequences

of a deviation in this paper and the respective consequences in papers that use trigger

strategies to overcome time-inconsistency problems (see, e.g., Loisel, 2008; Levine et al.,

2008).7 Compared to equilibria with trigger strategies, a small deviation of the central

bank only has small, transitory consequences for the economy. As can be seen easily,

the response of the economy after a deviation is always proportional to the magnitude

of the deviation.

It may also be instructive to consider the situation where 𝑠𝑡 differs from zero in one

period 𝑡, there are no markup shocks, i.e. 𝜉𝑡 = 0, and the central bank ignores the

burden of past promises, 𝑠𝑡, by setting 𝑢𝑡 = 0 in this period. In this case, 𝑠𝑡+1 = 𝛽−1𝑠𝑡

7Abreu et al. (1990) show that, under certain conditions, efficient sequential equilibria of infinitely
repeated games have the so-called bang-bang property, which involves that only extreme payoff com-
binations occur for all possible histories.

11



would hold. Thus the burden from past “promises” would grow by a factor 𝛽−1. This

mild increase in 𝑠𝑡 deters deviations in the first place.

2.6 Bounded errors

As has been highlighted in the previous analysis, one advantage of our approach is

that the punishment after a deviation is always in proportion to the deviation itself.

To see this from a slightly different angle, assume that the shocks 𝜀𝑡 are drawn from

a distribution with bounded support [−𝜀,+𝜀]. It is then easy to see that the state

variables 𝜉𝑡 and 𝑠𝑡 would remain bounded in equilibrium. In particular, 𝜉𝑡 would lie

in the interval
[︁
− 1

1−𝜌
𝜀,− 1

1−𝜌
𝜀
]︁

in all periods, provided that this is true for the initial

value 𝜉0. As a consequence, the policy-maker’s choices of instrument 𝑢𝑡 would also be

bounded in all periods. As is straightforward to show, this would also be true for all

future periods if the policy-maker deviated to the standard (Markovian) discretionary

solution in a particular period.8 Moreover, inflation would remain bounded as well.

The boundedness of 𝜋𝑡 and 𝑢𝑡 is an immediate consequence of the observation that the

state variable 𝑠𝑡 remains in a bounded set in all periods following a deviation to the

choice that would be optimal in the standard Markovian discretionary equilibrium. In

this sense, our approach always relies only on moderate punishments.

3 General Result

3.1 Set-up

In the following, we generalize the results for the simple new Keynesian model to a

general class of linear-quadratic models with rational expectations. There are 𝑛𝑥 pre-

determined variables, contained in the column vector 𝑥𝑡, and 𝑛𝑦 non-predetermined

variables, contained in the vector 𝑦𝑡. Let 𝑧𝑡 be the (𝑛𝑥 + 𝑛𝑦)-dimensional vector that

contains all predetermined and all non-predetermined variables, where the predeter-

mined variables come first. There is also a 𝑘-dimensional vector of instruments 𝑢𝑡.

The policy-maker’s objectives are described by

𝐿 = E0

∞∑︁
𝑡=0

𝛽𝑡 (𝑧′𝑡𝑄𝑧𝑡 + 2𝑧′𝑡𝑈𝑢𝑡 + 𝑢′
𝑡𝑅𝑢𝑡) , (22)

8The standard Markovian discretionary solution involves 𝑢𝑡 = − 𝜅
𝜅2+𝑎(1−𝛽𝜌)𝜉𝑡.
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where 𝛽 ∈ (0, 1). 𝑄 is an (𝑛𝑥+𝑛𝑦)×(𝑛𝑥+𝑛𝑦)-dimensional matrix, 𝑈 is an (𝑛𝑥+𝑛𝑦)×𝑘

dimensional matrix, and 𝑅 is a 𝑘 × 𝑘-dimensional matrix. Without loss of generality,

we assume 𝑄 and 𝑅 to be symmetric.

The predetermined and non-predetermined variables evolve according to

𝑥𝑡+1 = 𝐴𝑥𝑥𝑥𝑡 + 𝐴𝑥𝑦𝑦𝑡 + 𝐵𝑥𝑢𝑡 + 𝜀𝑥,𝑡+1, (23)

E𝑡𝑦𝑡+1 = 𝐴𝑦𝑥𝑥𝑡 + 𝐴𝑦𝑦𝑦𝑡 + 𝐵𝑦𝑢𝑡, (24)

where 𝐴𝑥𝑥, 𝐴𝑥𝑦, 𝐴𝑦𝑥, 𝐴𝑦𝑦, 𝐵𝑥, and 𝐵𝑦 are given matrices whose coefficients have been

obtained from log-linearized equations describing the private-sector equilibrium, for

example. The 𝑛𝑥 components of 𝜀𝑥,𝑡+1 describe the innovations to the predetermined

variables 𝑥𝑡+1. They have zero mean and covariance matrix Σ.

As is well-known, models with lagged variables and expectations more than one period

ahead can also be cast in the form considered here. The same is also be true for some

models with lagged expectations of present and future variables (see Blanchard and

Kahn (1980)).

3.2 Commitment

The commitment solution can be obtained by setting up the Lagrangian (Backus and

Driffill, 1986; Söderlind, 1999)

ℒ0 = E0

∞∑︁
𝑡=0

(︀
𝑧′𝑡𝑄𝑧𝑡 + 𝑧′𝑡𝑈𝑢𝑡 + 𝑢′

𝑡𝑅𝑢𝑡 + 𝜌′𝑡+1 (𝐴𝑧𝑡 + 𝐵𝑢𝑡 − 𝑧𝑡+1)
)︀
, (25)

where

𝐴 =

(︃
𝐴𝑥𝑥 𝐴𝑥𝑦

𝐴𝑦𝑥 𝐴𝑦𝑦

)︃
, 𝐵 =

(︃
𝐵𝑥

𝐵𝑦

)︃
. (26)

𝜌𝑡 is an (𝑛𝑥 + 𝑛𝑦)-dimensional vector of Lagrange multipliers (𝑡 = 1, 2, 3, ...). The

first-order conditions with respect to 𝑧𝑡 and 𝑢𝑡 are

𝛽𝐴′E𝑡𝜌𝑡+1 = −𝛽𝑄𝑧𝑡 − 𝛽𝑈𝑢𝑡 + 𝜌𝑡, (27)

−𝐵′E𝑡𝜌𝑡+1 = 𝑈 ′𝑧𝑡 + 𝑅𝑢𝑡. (28)

We assume that the commitment solution exists and involves unique paths of 𝑧𝑡 and 𝑢𝑡.

As shown by Backus and Driffill (1986), the commitment solution can then be described

13



by an equation that specifies the evolution of the predetermined variables 𝑥𝑡 and the

multipliers 𝜌𝑦,𝑡 associated with the non-predetermined variables(︃
𝑥𝑡+1

𝜌𝑦,𝑡+1

)︃
= 𝐻

(︃
𝑥𝑡

𝜌𝑦,𝑡

)︃
+

(︃
𝜀𝑡+1

0

)︃
, (29)

where 𝐻 is an (𝑛𝑥 + 𝑛𝑦) × (𝑛𝑥 + 𝑛𝑦)-dimensional matrix. The initial values of the

predetermined variables 𝑥𝑡 are exogenously given. The initial values of the elements

in 𝜌𝑦,𝑡 are zero because the non-predetermined variables can be chosen freely in 𝑡 = 0.

The non-predetermined variables 𝑦𝑡, the Lagrange multipliers 𝜌𝑥,𝑡 associated with the

predetermined variables, and the policy-makers’ instruments 𝑢𝑡 can be expressed as

functions of the current values of 𝑥𝑡 and 𝜌𝑦,𝑡. In particular, 𝑦𝑡 can be written as

𝑦𝑡 = 𝐶

(︃
𝑥𝑡

𝜌𝑦,𝑡

)︃
. (30)

𝐶 is an 𝑛𝑦 × (𝑛𝑥 + 𝑛𝑦)-dimensional matrix that can be decomposed as 𝐶 =
(︀
𝐶𝑥, 𝐶𝜌𝑦

)︀
,

where 𝐶𝑥 has dimensions 𝑛𝑦 × 𝑛𝑥 and 𝐶𝜌𝑦 has size 𝑛𝑦 × 𝑛𝑦.

3.3 Discretionary Policy-Making

We are now in a position to formulate our main result:

Proposition 1. Consider the unique commitment solution of the model characterized

by (23), (24) and loss function (22). Let 𝐶 = (𝐶𝑥, 𝐶𝜌𝑦) be the matrix that describes how

𝑦𝑡 depends on 𝑥𝑡 as well as 𝜌𝑦,𝑡 (see (30)). Then 𝐶𝜌𝑦 is invertible. For the discretionary

policy-maker, introduce an 𝑛𝑦-dimensional vector of additional state variables, 𝑠𝑡. In

the initial period, set 𝑠0 = 0𝑛𝑦 .
9 For 𝑡 = 0, 1, 2, ..., assume that 𝑠𝑡 evolves according to

𝑠𝑡+1 = 𝐴𝑠𝑥𝑥𝑡 + 𝐴𝑠𝑠𝑠𝑡 + 𝐵𝑠𝑢𝑡, (31)

where the matrices 𝐵𝑠, 𝐴𝑠𝑥, and 𝐴𝑠𝑠 are given by

𝐵𝑠 = 𝐶−1
𝜌𝑦 (𝐵𝑦 − 𝐶𝑥𝐵𝑥) , (32)

𝐴𝑠𝑥 = 𝐶−1
𝜌𝑦 [(𝐴𝑦𝑦 − 𝐶𝑥𝐴𝑥𝑦)𝐶𝑥 − 𝐶𝑥𝐴𝑥𝑥 + 𝐴𝑦𝑥] , (33)

𝐴𝑠𝑠 = 𝐶−1
𝜌𝑦 (𝐴𝑦𝑦 − 𝐶𝑥𝐴𝑥𝑦)𝐶𝜌𝑦 . (34)

9We use the definition that 0𝑛𝑦
is an 𝑛𝑦-dimensional column vector of zeros.
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Then a discretionary equilibrium for (23), (24), (31) and loss function (22) exists that

implements the commitment solution.

The proof is given in Appendix A.

The main idea for the proof of the general result is similar to the one for the new

Keynesian model. First, the fact that the commitment solution can be described by

the joint dynamics of 𝑥𝑡 and 𝜌𝑦,𝑡 suggests that 𝑛𝑦 additional state variables should be

added to the discretionary policy-maker’s problem in addition to the payoff-relevant

state variables 𝑥𝑡. These additional state variables are the components of 𝑠𝑡. Second, to

ensure that the policy-maker does not renege on past promises, the dynamics of 𝑠𝑡 are

specified in a way such that, in every period 𝑡, the policy-maker cannot influence current

non-predetermined variables (as opposed to future non-predetermined variables). This

is achieved by (32), which is a straightforward generalization to (11). Third, (33) and

(34) specify the matrices 𝐴𝑠𝑠 and 𝐴𝑠𝑥 in a manner such that the dynamics of 𝑠𝑡 on the

equilibrium path of the discretionary equilibrium equal those of 𝜌𝑦,𝑡 in the commitment

solution. Finally, one needs to show that the discretionary policy-maker does not wish

to deviate. At this point of the proof, it is helpful that the value function of the

discretionary policy-maker can be constructed from the commitment solution under

the assumption that both approaches lead to identical dynamics.

We stress that the equilibrium for the discretionary policy-maker’s problem specified

in Proposition 1 is typically not unique.10 In all cases where the economy admits a

Markov-perfect discretionary equilibrium, this equilibrium will also correspond to an

equilibrium for the economy where the additional state variables 𝑠𝑡 have been added

via (31).

It may also be interesting to relate Proposition 1 to a theorem in Backus and Driffill

(1986) that examines whether the commitment solution can be supported by trigger

strategies.11 In particular, they consider the case where deviations from the com-

mitment solution are punished by a grim trigger, i.e. a permanent switch to the

standard Markov-perfect discretionary equilibrium. According to their theorem, the

commitment solution can be sustained (i) if the support of shocks is bounded and

(ii) if the discount factor is sufficiently large. By contrast, the discretionary equilibria

constructed in this paper always allow for the implementation of the commitment solu-

tion, irrespective of the magnitude of the discount factor and for an arbitrary support

10See also our related discussion in Section 3.3.
11Currie and Levine (1993) find an analogous result for continuous-time models. A related finding

for the new Keynesian model is due to Kurozumi (2008).
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of shocks. This result stems from the fact that, loosely speaking, the punishment for

deviations from the commitment solution is not restricted to a switch to the standard

discretionary equilibrium.

4 Conclusions

This paper has shown that the implementation of the commitment solution is often

possible also for policy-makers who lack a means of commitment. As a consequence, the

main task for the policy-maker is to help coordinate economic agents on the equilibrium

that facilitates the commitment outcome.

An interesting avenue for future research would be whether solutions under intermedi-

ate degrees of commitment (Schaumburg and Tambalotti, 2007; Debortoli and Nunes,

2010; Debortoli et al., 2014), where the policy-maker may renege on past promises

with a constant probability every period, can be implemented by a fully discretionary

policy-maker as well. It appears plausible that this is possible in a variant of our set-up

where, in every period, all additional payoff-irrelevant state variables are set to zero

with a constant exogenous probability. In addition, it may be instructive to examine

variants of our approach where these state variables are not set to zero completely but

where their magnitude may be reduced from time to time. This would capture a mild

form of loose commitment where past commitments are not lost completely.
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A Proof of Proposition 1

It will be useful to note that the commitment solution can also be obtained by an

alternative approach outlined in Backus and Driffill (1986). They formulate (23) and

(24) jointly as

𝑧𝑡+1 = 𝐴𝑧𝑡 + 𝐵𝑢𝑡 + 𝜀𝑡+1, (35)

where the first 𝑛𝑥 elements of 𝜀𝑡+1 are the exogenous disturbances 𝜀𝑥,𝑡+1 and the re-

maining components are given by the endogenous expectational errors 𝜀𝑦,𝑡+1, which

have to satisfy the requirement that E𝑡𝜀𝑦,𝑡+1 = 0𝑛𝑦 for 𝑡 = 0, 1, 2, ....

In a first step of the alternative approach, the policy-maker takes 𝑧𝑡 as given when it

makes its choice regarding 𝑢𝑡 for 𝑡 = 0, 1, 2, .... In a second step, it chooses the initial

value of the non-predetermined variable, 𝑦0, as well as the expectational errors 𝜀𝑦,𝑡 for

𝑡 = 1, 2, 3, ....

Thus in the first step, the policy-maker selects 𝑢𝑡 to minimize

min
𝑢𝑡

{︀
𝑧′𝑡𝑄𝑧𝑡 + 2𝑧′𝑡𝑈𝑢𝑡 + 𝑢′

𝑡𝑅𝑢𝑡 + 𝛽E𝑡

[︀
𝑧′𝑡+1𝑉 𝑧𝑡+1 + 𝑘

]︀}︀
,

subject to (35), 𝑧𝑡 given,
(36)

where 𝑧′𝑡+1𝑉 𝑧𝑡+1 + 𝑘 is the cost-to-go at 𝑡+ 1 with a (𝑛𝑥 + 𝑛𝑦)× (𝑛𝑥 + 𝑛𝑦)-dimensional

symmetric matrix 𝑉 and a constant 𝑘. Importantly, 𝑉 is related to the multipliers

from the Lagrangian approach via12

𝜌𝑡 = 𝛽𝑉 𝑧𝑡. (37)

We construct matrices 𝑉𝑥𝑥, 𝑉𝑥𝑦, 𝑉𝑦𝑥, and 𝑉𝑦𝑦 by partitioning 𝑉 conformably with 𝑥𝑡

and 𝑦𝑡.

In the second step, the policy-maker selects 𝑦0 as well as the endogenous forecast

errors 𝜀𝑦,𝑡+1. The latter choice is immaterial for our purposes and therefore omitted.

The former choice is obtained as a result of minimizing 𝑧′0𝑉 𝑧0 = 𝑥′
0𝑉𝑥𝑥𝑥0 + 2𝑥′

0𝑉𝑥𝑦𝑦0 +

𝑦′0𝑉𝑦𝑦𝑦0 with respect to 𝑦0 for given 𝑥0. The corresponding first-order condition is

𝑉𝑦𝑥𝑥0 + 𝑉𝑦𝑦𝑦0 = 0. (38)

12There appears to be a small mistake in Backus and Driffill (1986), as they omit the discount factor
in the relationship between 𝜌𝑡 and 𝑉 𝑧𝑡. That (37) is correct can be confirmed by comparing (28) and
the first-order condition for optimization problem (36), which is 𝑈 ′𝑧𝑡 +𝑅𝑢𝑡 + 𝛽𝐵′𝑉 E𝑡𝑧𝑡+1 = 0.
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Since we have assumed that the commitment solution involves a unique path of all

economic variables, the optimal choice of 𝑦0 is unique. Thus we can conclude that 𝑉𝑦𝑦

is invertible.

Comparing (30) and 𝜌𝑦,𝑡 = 𝛽𝑉𝑦𝑥𝑥𝑡 +𝛽𝑉𝑦𝑦𝑦𝑡 (see (37)) leads to the implication that 𝐶𝜌𝑦

is invertible as well and that

𝑉𝑦𝑥 = −𝛽−1𝐶−1
𝜌𝑦 𝐶𝑥, (39)

𝑉𝑦𝑦 = 𝛽−1𝐶−1
𝜌𝑦 . (40)

It will be useful to introduce matrix 𝑇 as

𝑇 =

(︃
𝐼𝑛𝑥 0𝑛𝑥×𝑛𝑦

𝛽𝑉𝑦𝑥 𝛽𝑉𝑦𝑦

)︃
, (41)

where 𝐼𝑛𝑥 is the 𝑛𝑥 × 𝑛𝑥-dimensional identity matrix and 0𝑛𝑥×𝑛𝑦 is an 𝑛𝑥 × 𝑛𝑦 matrix

of zeros. Matrix 𝑇 allows us to transform 𝑧𝑡 =

(︃
𝑥𝑡

𝑦𝑡

)︃
into

(︃
𝑥𝑡

𝜌𝑦,𝑡

)︃
:

(︃
𝑥𝑡

𝜌𝑦,𝑡

)︃
= 𝑇

(︃
𝑥𝑡

𝑦𝑡

)︃
(42)

We note that 𝑇 is invertible with

𝑇−1 =

(︃
𝐼𝑛𝑥 0𝑛𝑥×𝑛𝑦

−𝑉 −1
𝑦𝑦 𝑉𝑦𝑥 𝛽−1𝑉 −1

𝑦𝑦

)︃
. (43)

After these preliminary steps, we now begin to formulate the optimization problem

under discretion, assuming that all variables 𝑧𝑡 and 𝑢𝑡 evolve as in the commitment

solution and introducing a vector of additional state variables 𝑠𝑡, which is always iden-

tical to 𝜌𝑦,𝑡 on the equilibrium path. We postulate that, in period 𝑡 + 1, 𝑦𝑡+1, will

depend on 𝑥𝑡+1 and 𝑠𝑡+1 in the same way that 𝑦𝑡+1 depends on 𝑥𝑡+1 and 𝜌𝑦,𝑡+1 in the

commitment solution (compare (30)). In this case, (24) can be formulated as

E𝑡𝐶

(︃
𝑥𝑡+1

𝑠𝑡+1

)︃
= 𝐴𝑦𝑥𝑥𝑡 + 𝐴𝑦𝑦𝑦𝑡 + 𝐵𝑦𝑢𝑡. (44)
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Combining (23), (31), and (44) yields

(𝐴𝑦𝑦 − 𝐶𝑥𝐴𝑥𝑦) 𝑦𝑡 =
(︀
𝐶𝑥𝐴𝑥𝑥 + 𝐶𝜌𝑦𝐴𝑠𝑥 − 𝐴𝑦𝑥

)︀
𝑥𝑡 + 𝐶𝜌𝑦𝐴𝑠𝑠𝑠𝑡

+
(︀
𝐶𝑥𝐵𝑥 + 𝐶𝜌𝑦𝐵𝑠 −𝐵𝑦

)︀
𝑢𝑡.

(45)

We choose 𝐵𝑠 such that 𝐶𝑥𝐵𝑥 + 𝐶𝜌𝑦𝐵𝑠 − 𝐵𝑦 = 0, which is equivalent to (32). This

entails that the policy-maker cannot affect 𝑦𝑡 by changing 𝑢𝑡:

(𝐴𝑦𝑦 − 𝐶𝑥𝐴𝑥𝑦) 𝑦𝑡 =
(︀
𝐶𝑥𝐴𝑥𝑥 + 𝐶𝜌𝑦𝐴𝑠𝑥 − 𝐴𝑦𝑥

)︀
𝑥𝑡 + 𝐶𝜌𝑦𝐴𝑠𝑠𝑠𝑡 (46)

Comparing with (30) yields

(𝐴𝑦𝑦 − 𝐶𝑥𝐴𝑥𝑦)𝐶𝑥 = 𝐶𝑥𝐴𝑥𝑥 + 𝐶𝜌𝑦𝐴𝑠𝑥 − 𝐴𝑦𝑥, (47)

(𝐴𝑦𝑦 − 𝐶𝑥𝐴𝑥𝑦)𝐶𝜌𝑦 = 𝐶𝜌𝑦𝐴𝑠𝑠. (48)

These equations are equivalent to (33) and (34). They pin down 𝐴𝑠𝑥 and 𝐴𝑠𝑠.

We introduce a symmetric (𝑛𝑥 + 𝑛𝑦) × (𝑛𝑥 + 𝑛𝑦)-dimensional matrix 𝑊 such that,

conditional on optimal behavior by the policy-maker in every period, the present value

of discounted losses is (𝑥′
𝑡, 𝑠

′
𝑡)𝑊

(︃
𝑥𝑡

𝑠𝑡

)︃
, up to a constant term. The discretionary policy-

maker’s optimization problem can then be stated as

min
𝑢𝑡

{︃
2
(︁
𝑥′
𝑡 𝑦′𝑡

)︁
𝑈𝑢𝑡 + 𝑢′

𝑡𝑅𝑢𝑡 + 𝛽E𝑡

[︃
(𝑥′

𝑡+1, 𝑠
′
𝑡+1)𝑊

(︃
𝑥𝑡+1

𝑠𝑡+1

)︃]︃}︃
subject to (23), (31), 𝑥𝑡, 𝑦𝑡, and 𝑠𝑡 given.

(49)

It is noteworthy that the term 𝑧′𝑡𝑄𝑧𝑡 from the loss function can be ignored in the

minimization problem because 𝑥𝑡 is predetermined in 𝑡 and 𝑦𝑡, due to our choice of 𝐵𝑠,

is effectively predetermined as well.

As a next step, we note that the matrix 𝑊 is related to 𝑉 via the relation

𝑊 =
(︀
𝑇−1

)︀′
𝑉 𝑇−1 (50)

because the candidate discretionary equilibrium we are constructing involves the same

cost-to-go as the commitment solution.
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With the help of (50), we can state the first-order condition for optimization problem

(49) as

𝑈 ′𝑧𝑡 + 𝑅𝑢𝑡 + 𝛽
(︁
𝐵′

𝑥 𝐵′
𝑠

)︁ (︀
𝑇−1

)︀′
𝑉 𝑇−1E𝑡

(︃
𝑥𝑡+1

𝑠𝑡+1

)︃
= 0. (51)

Because of

𝑇−1

(︃
𝑥𝑡+1

𝑠𝑡+1

)︃
=

(︃
𝑥𝑡+1

𝑦𝑡+1

)︃
= 𝑧𝑡+1, (52)

𝛽𝑉 E𝑡𝑧𝑡+1 = E𝑡𝜌𝑡+1, (53)

and (︁
𝐵′

𝑥 𝐵′
𝑠

)︁ (︀
𝑇−1

)︀′
=
(︁
𝐵′

𝑥 𝐵′
𝑦

)︁
= 𝐵′, (54)

the condition for optimal behavior by the discretionary policy-maker, (51), is equiv-

alent to (28), which holds for the commitment solution. Thus we have constructed a

discretionary equilibrium that implements the commitment solution.
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