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Abstract

This paper explores how favor exchange in communities in�uences investment and

wealth dynamics. Our main result identi�es a key obstacle to wealth accumulation:

wealth crowds out favor exchange. Thus, low-wealth households forego pro�table in-

vestments, since growing their wealth would entail losing access to the support of the

community. The result is that some communities are �left behind,� with persistently

lower wealth than the rest of the economy. Using numerical simulations, we show that

�place-based� policies encourage wealth accumulation and so particularly bene�t left-

behind communities. Kinship, friendship, or religious ties among community members

can similarly spur investment and wealth accumulation.
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1 Introduction

The United States and many other countries have grappled with persistent and prevalent

wealth inequality: poor communities persist even in otherwise-rich economies. Members

of these �left-behind� communities su�er from low wealth and limited economic prospects

(Ganong and Shoag 2017, Austin et al. 2018). Yet, despite those problems, left-behind

communities are not dying out; instead, many households express a strong preference for

staying in them (Bartik 2020). One reason that households choose to stay is that their

neighbors are an important source of �practical and social support� (Economist 2020). In

the United States, for example, left-behind communities o�er �a crucial source of childcare�

and other assistance (Economist 2017).

The fact that communities provide this kind of support makes it all the more puzzling

that they don't catch up with wealthier areas. Community support has the potential to

help households make wealth-creating investments. In practice, however, support does not

translate to growing wealth; instead, households tend to merely �get by� (Warren et al.

2001), even when they have opportunities to grow their wealth by paying down high-interest

debts or making other high-return investments (Ananth et al. 2007, Stegman 2007, Mel et al.

2008). For all of its bene�ts, why doesn't the support of the community translate to growing

wealth?

This paper studies how communities shape wealth accumulation and welfare. To do so,

we develop a model that combines favor-exchange in communities with investment dynamics.

Our main result uncovers a key obstacle to wealth accumulation in the community: wealth

crowds out favor exchange. Poor households therefore face a stark choice between growing

their wealth and accessing support from their communities. The result is a persistent wealth

gap between left-behind communities and the rest of the economy.

The reason for this result is what we call the �too big for their boots� e�ect: wealth

undermines trust among community members. In particular, neighbors are willing to sup-

port a household only if they trust it to reciprocate in the future. Rather than reciprocate,
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households can instead leave the community; in our model, leaving consists of moving to

an anonymous market that we call the �city.� Wealth makes the city more attractive, so

wealthy households are more tempted to leave the community rather than repay neighbors

for past support. Thus, as households get wealthier, they lose the ability to access signi�cant

community support. To avoid this �too big for their boots� e�ect, households forego prof-

itable investments and keep their wealth low. Thus, while community support encourages

consumption and improves welfare, it also depresses investment, deepens inequality, and

perpetuates low wealth.

In her seminal study of an impoverished United States community, the anthropologist

Carol Stack vividly illustrates how wealth can undermine trust (Stack [1975]). Favor ex-

change is ubiquitous among the households that she studies, with neighbors trading child-

care, clothing, transportation, and food with one another. These relationships are typically

dynamic�neighbors repay one another in kind and over time�and are backed by the threat

of social sanctions. Strikingly, Stack [1975] suggests that it is the wealthiest (though still

poor) members of the community who are most at risk of being excluded from favor exchange:

�Members of second-generation welfare families have calculated the risk of
giving. As people say, `The poorer you are, the more likely you are to pay back.'
This criterion often determines which kin and friends are actively recruited into
exchange networks.� - p. 43

This rule of thumb might seem strange, since wealthier households presumably have more

resources to trade. However, Stack [1975] points out that wealthier households are also less

reliant on the community, since they can leave and meet their needs in a nearby city, Chicago.

To explore the implications of the �too big for their boots� e�ect, we develop a dynamic

model of a household that resides in a tight-knit community and trades consumption goods

with its neighbors. To compensate those neighbors, the household can make an up-front

monetary payment, and it can also promise�but not commit to�an ex post, in-kind reward.

The household invests its remaining wealth in a positive-return investment. In any period,

the household can choose to leave this community for the city, which is more productive
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than the community but also anonymous.

In the city, anonymity implies that favor exchange is impossible. Thus, once a household

moves to the city, it uses wealth alone to purchase goods and services. It optimally does so

according to a standard consumption-investment problem, where wealth and consumption

grow over time. In contrast, a household in the community can augment consumption by

engaging in favor exchange with its neighbors. The household follows through on such

exchanges only if it is otherwise punished. Since a wealthy household can better escape

these punishments by moving to the city, it is less trusted to repay favors. This gives rise

to the �too big for their boots� e�ect: wealthier households are less able to exchange favors

with their neighbors.

Our main result builds on this logic to identify two reasons why left-behind communi-

ties remain left behind. First, wealthy households leave for the city, so that only poorer

households remain in the community. This initial selection e�ect is then compounded by a

treatment e�ect: households in the community under-invest and experience sharply limited

long-term wealth. Indeed, for some households, under-investment is so severe that wealth

actually decreases over time. Thus, while households in the city take full advantage of in-

vestment opportunities and get richer, households in the community stay poor and may even

get poorer.

This result sheds light on what policies might help left-behind communities. Researchers

have proposed two approaches to spurring growth in these communities: �place-based� poli-

cies provide bene�ts for households so long as they remain in the community, while �mobility-

based� policies encourage households to leave and access greater economic opportunities

elsewhere (Bartik 2020). Using numerical simulations, we show that place-based policies

mitigate the �too big for their boots� e�ect and encourage wealth accumulation. Mobility-

based policies have the opposite e�ect: they encourage some households to leave, but they

also discourage wealth accumulation and decrease welfare for those who remain. Thus, our

model provides a rationale for place-based policies. Family, religious, and social ties can
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similarly bind households to their communities and thereby encourage wealth accumulation.

The contribution of this paper is to explore how communities in�uence wealth dynamics.

Since those dynamics occur in the shadow of an anonymous market, the city, we are related

to papers on the interaction between formal and informal markets (Kranton 1996, Banerjee

and Newman 1998, Gagnon and Goyal 2017, Banerjee et al. 2018, Jackson and Xing 2019).

Unlike that literature, we focus on how this interaction shapes wealth dynamics. In so doing,

we explore an intertemporal spillover from future wealth to current cooperation. This focus

also separates us from other papers that study how communities distort decision-making

(Austen-Smith and Fryer 2005, Ho� and Sen 2006).

Our model of exchange draws on the relational contracting literature (Macaulay 1963,

Bull 1987, Levin 2003, Malcomson 2013), particularly those papers that consider the role

of outside options (Baker et al. 1994, Kovrijnykh 2013). We contribute to this literature

by introducing a new state variable, wealth, and by modeling anonymous exchange as an

alternative to long-term relationships in the community. We are therefore related to papers

that study cooperation in communities (Wolitzky 2013, Ali and Miller 2016, 2018, Miller

and Tan 2018); however, we abstract from questions of network structure to instead focus

on wealth dynamics.

Our main result is that favor exchange discourages investments and perpetuates inequal-

ity. Unlike papers that study under-investment due to lumpy costs (e.g., Nelson 1956, Advani

2019), we assume that investment entails no �xed costs. This type of under-investment has

been documented in, e.g., Karlan et al. [2019] and Balboni et al. [2020]; the theory literature

has proposed two possible explanations for it. First, individuals might be subject to time-

inconsistent preferences (Bernheim et al. 2015) or temptations (Banerjee and Mullainathan

2010). Second, capital markets might be imperfect; for instance, monopolistic lenders might

expropriate the returns on investment (Mookherjee and Ray 2002) or impose restrictive

covenants that limit long-term investment (Liu and Roth 2019). Our model o�ers a di�er-

ent explanation, which is that households voluntarily limit investment to maintain access to
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community support. Thus, even though our model assumes neither behavioral preferences

nor capital-market imperfections, poor households do not take full advantage of investment

opportunities and have persistently low wealth.

The idea that money eases commitment problems dates to Jevons [1875]'s argument that

money solves the �double coincidence of wants.� Prendergast and Stole [1999, 2000] build

on this idea to compare market and barter economies. We build on a related idea to explore

wealth dynamics.

2 Model

A long-lived household (�it�) has initial wealth w0 > 0 and discount factor δ ∈ (0, 1). The

household initially lives in the community. At the start of each period t ∈ {0, 1, ...}, it can

choose to stay in the community or irreversibly move to a city.

If the household is still in the community in period t, then it plays the following com-

munity game with a short-lived neighbor t (�she�), who represents another member of

the community:

1. The household requests a consumption level ct ≥ 0 and o�ers a payment pt ∈ [0, wt] in

exchange. Note that pt cannot exceed the household's wealth, wt.

2. Neighbor t accepts or rejects this exchange, dt ∈ {0, 1}. If she accepts (dt = 1), then

she receives pt and incurs the cost of providing ct. If she rejects (dt = 0), then no trade

occurs.

3. The household decides how much of a favor to perform for neighbor t, ft > 0 .

4. The household invests its remaining wealth, wt − ptdt, to generate wt+1. Let R(·) give

the return on investment, so that

wt+1 = R(wt − ptdt).
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The household's period-t payo� is πt = U(ctdt)− ft. Neighbor t's payo� is (pt − ct) dt + ft.

Interactions are observed by all neighbors, re�ecting the idea that the community is tight-

knit.

We assume that consumption utility U(·) and investment returns R(·) are strictly increas-

ing and strictly concave, with U ′′(·) and R′(·) continuous and U(0) = 0, limc↓0 U
′(c) = ∞,

and limc→∞ U
′(c) = 0. Investment generates positive returns, and strictly so below a thresh-

old w̄ > 0: R(0) = 0, R′(w) > 1
δ
for w < w̄, and R′(w) = 1

δ
for w > w̄.

If the household has moved to the city by period t, then it plays the city game with a

short-lived vendor t (�she�). The city game is identical to the community game in all but

two ways. First, each vendor observes only her own interaction with the household, so that

transactions are anonymous in the city. Second, consumption has higher marginal utility,

re�ecting that the city is more productive at providing goods and services. Letting Û(·)

be the household's consumption utility in the city, so that πt = Û(ctdt) − ft, we assume

that Û ′(c) > U ′(c) for all c > 0. Otherwise, Û(·) satis�es the same conditions as U(·). A

household in the city remains there forever.1

The household's continuation payo� in period t is

Πt ≡ (1− δ)
∞∑
s=t

δs−tπs.

We characterize household-optimal equilibria, which are the Perfect Bayesian Equilibria that

maximize the household's ex ante expected payo�.

We maintain the following assumption, which ensures that households in the community

have access to strictly positive-return investments.

Assumption 1 De�ne c̄ > 0 as the solution to U
′
(c̄) = 1. Then, R(w̄ − c̄) > w̄.

In the context of Stack [1975], the household and neighbors are members of a predom-

inantly low-income community called �the Flats.� Members of the Flats exchange a wide

1In Online Appendix B, we show that the �too big for their boots� e�ect arises even if households in the

city can return to the community.
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variety of goods and services (ct), including food, clothing, childcare, and transportation.

While households can pay one another with money (pt), compensation also occurs via favor

exchange. For example, the recipient of childcare (ct > 0) might agree to reciprocate with

future childcare (ft > 0). Households accumulate wealth (R(·)) by repaying high-interest

debt and making other high-return investments. As Stack [1975] emphasizes, households in

the Flats can move to a nearby city, Chicago, which harbors better opportunities (Û ′ > U ′)

but is far enough away that a household must leave the Flats to access them.

3 Life in the City

We �rst characterize wealth dynamics in the city. A household in the city faces a standard

consumption-investment problem, takes full advantage of investment opportunities, and ac-

cumulates wealth.

Transactions are anonymous in the city, so ft = 0 in equilibrium. Vendor t is therefore

willing to accept any o�er that covers his costs, pt ≥ ct; consequently, every equilibrium

entails pt = ct in every t > 0, so that wt+1 = R(wt− ct). For a household with wealth w, the

resulting optimal consumption and payo� are given by:

Ĉ(w) ∈ arg max
c∈[0,w]

(
(1− δ)Û(c) + δΠ̂ (R (w − c))

)
and

Π̂(w) = max
c∈[0,w]

(
(1− δ)Û(c) + δΠ̂ (R (w − c))

)
.

Our �rst result shows that Π̂(w) and Ĉ(w) are the unique equilibrium outcome in the city.

Proposition 1 Both Π̂(·) and Ĉ(·) are strictly increasing, with Π̂(·) continuous. In any

equilibrium, Πt = Π̂(wt) and ct = Ĉ(wt) in any t ≥ 0, with (wt)
∞
t=0 increasing and

lim
t→∞

wt ≥ w̄

on the equilibrium path.
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The proof of Proposition 1 is routine and relegated to Online Appendix A. Since R′(w) >

1
δ
for w < w̄, the standard Euler equation,

Û ′(Ĉ(wt)) = δR′(wt − Ĉ(wt))Û
′(Ĉ(wt+1)), ∀ t, (1)

implies that wealth increases until at least w̄ in the city. Figure 1 simulates equilibrium

consumption as a function of w and the resulting consumption and wealth dynamics.

Figure 1: Left panel: the household's equilibrium payo� and consumption as a function of
w; Right panel: consumption and wealth over time, starting at w0 = 0.108.

4 Household-Optimal Wealth Dynamics

We now turn to our main result, which characterizes household-optimal equilibria in the

community. Section 4.1 states this result and discusses its intuition. Section 4.2 gives the

proof.

4.1 Life in the Community

Our main result identi�es two reasons why wealth in the community remains substantially

below wealth in the city. First, there is a selection margin: the wealthiest members of

the community leave, so that only the less-wealthy households remain. Second, there is a
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treatment e�ect: those households that remain do not take full advantage of investment

opportunities, so their long-run wealth is sharply limited.

To build intuition for this result, note that the sole advantage of the community is that

neighbors can observe and punish a household who reneges on ft > 0. Therefore, the

household can credibly promise ft > 0 to compensate neighbor t for providing consumption

ct > pt. Thus, while the city has higher productivity, favor exchange is possible only in the

community.

The opportunity to engage in favor exchange is most attractive to low-wealth households,

which would have minimal consumption in the city. Conversely, wealthy households can

consume a lot in the city and so would derive little bene�t from using favor exchange to

further augment consumption. This argument implies that the richest households leave the

community and the poorest households stay, giving us our selection margin.

To understand wealth dynamics within the community, consider a household with wealth

wt that stays. Suppose that this household consumes ct and invests It ≡ wt − pt. As in the

standard Euler equation, (1), investment allows for higher future consumption, which has

marginal bene�t U ′(ct+1)R′(It). Investment also leads to lower pt and hence lower ct, which

has marginal cost U ′(ct).

In the community, this familiar cost and bene�t are joined by a second, indirect cost

of investment. Since the household can always renege on ft, leave, and earn Π̂(R(It)), the

maximum favor that can be sustained in equilibrium depends on It. Denoting the household's

on-path continuation payo� by Π∗(R(It)), ft must satisfy the following dynamic enforcement

constraint:

ft ≤ f̄(It) ≡
δ

1− δ
(Π∗(R(It))− Π̂(R(It))). (2)

Assuming that f̄(·) is di�erentiable and (2) binds, the marginal e�ect of investment on the

equilibrium favor in period t is f̄ ′(It). Consumption, ct, optimally changes one-for-one with

ft, so a change in ft leads to a corresponding change in the household's payo� of U ′(ct)− 1.

In a household-optimal equilibrium, the two marginal costs of investment must equal its
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marginal bene�t, leading to the following modi�ed Euler equation:

U ′(ct) = δR′(It)U
′(ct+1) + f̄ ′(It)(U

′(ct)− 1). (3)

The �too big for their boots� e�ect holds whenever f̄ ′(It) < 0, so that investment crowds

out favor exchange. We will show that U ′(ct)− 1 > 0 for any household in the community.

Consequently, whenever the �too big for their boots� e�ect holds, the investment that satis�es

(3) is strictly below the investment that satis�es the standard Euler equation. This is the

sense in which the household �over�-consumes and �under�-invests.

This intuition identi�es the mechanism that leads to under-investment, but it elides a

key complication: the maximum credible favor, f̄(·), depends on both Π∗(·) and Π̂(·), which

in turn depend on the household's future consumption and investment decisions. Wealth is

a persistent state variable that a�ects all of these decisions, rendering a full characterization

of household-optimal equilibria intractable.

Our main result, Proposition 2, instead characterizes the selection and treatment e�ects.

Selection is summarized by a wealth level, wse < w̄, such that the household leaves whenever

wt ≥ wse, and a set W ⊆ [0, wse] such that the household stays forever whenever wt ∈ W .

Treatment is summarized by a wealth level, wtr < wse, such that long-term wealth of a

household in the community is no more than wtr.

Proposition 2 Impose Assumption 1. There exist wealth levels wtr < wse ∈ (0, w̄) and a

positive-measure set W ⊆ [0, wse] such that in any household-optimal equilibrium:

1. Selection. The household stays in the community forever if w0 ∈ W, and otherwise

leaves in t = 0.

2. Treatment. If the household stays in the community, then (wt)
∞
t=0 is monotone, with

lim
t→∞

wt 6 wtr.
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Moreover, W ∩ [wtr, wse] has positive measure.

Section 4.2 gives the proof of this result. To see the intuition, note that we have already

argued that wealthy households leave the community while some poorer households stay. Any

household that stays, stays forever, since otherwise favor exchange would unravel from their

last interaction within the community. This gives us a wealth level above which households

leave, wse, and a set W of poorer households that stay forever.

Now, consider a household that stays with initial wealth just below wse. Such a household

is close to indi�erent between leaving and staying. Thus, if this household's future wealth

remains near wse, then ft ≈ 0. Since staying is optimal only if ft � 0 in some t, the

household must under-invest so severely that its wealth decreases. The proof of Proposition

2 strengthens this result by showing that (wt)
∞
t=0 is monotone and that a positive measure

of households, W ∩ [wtr, wse], stay in the community despite having initial wealth near wse.

These households experience declining wealth.

Figure 2: Simulated household-optimal equilibrium payo�s and wealth dynamics

Figure 2 summarizes Proposition 2. In this simulation, the household moves to the city

if w0 > wse and otherwise stays. Among those that stay, households with wealth below wtr

grow their wealth, but only to wtr. Those with w0 ∈ (wtr, wse) have declining wealth over

time.
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An implication of this result is that one-time transfers do not necessarily spur further

investment. In Figure 2, consider a one-time transfer that increases the household's wealth. If

its resulting wealth satis�es wt < wse, then long-term wealth remains wtr and so is completely

una�ected by this transfer. This result resonates with Karlan et al. [2019], which �nds that

low-wealth entrepreneurs receiving debt relief tend to quickly fall back into debt. In contrast,

a transfer that is large enough to lead to wt ≥ wse does induce further investment, but only

by spurring the household to leave the community.

4.2 The Proof of Proposition 2

Let Π∗(w) be the maximum equilibrium payo� of a household with wealth w. De�ne

Πc(w) ≡ maxc≥0,f≥0 {(1− δ)(U(c)− f) + δΠ∗(R(w + f − c))}

s.t. 0 ≤ c− f ≤ w (4)

f ≤ δ

1− δ

(
Π∗(R(w + f − c))− Π̂(R(w + f − c))

)
. (5)

We show that Πc(w) is the household's maximum payo� conditional on staying in the com-

munity in the current period. The household's maximum equilibrium payo�, Π∗(w), is the

maximum of Π̂(w) and Πc(w).

Lemma 1 The household's maximum equilibrium payo� is Π∗(w0) = max
{

Π̂(w0),Πc(w0)
}
,

where Πc(·) and Π∗(·) are strictly increasing.

Proof of Lemma 1: We show that Πc(·) is the household's maximum equilibrium payo�

conditional on staying in the community in the current period. In any equilibrium, neighbor

0 accepts only if c0 ≤ p0 +f0. The household's continuation payo� is at most Π∗(R(w0−p0))

and at least Π̂(R(w0 − p0)). Hence, it is willing to do favor f0 only if

f0 ≤
δ

1− δ

(
Π∗(R(w0 − p0))− Π̂(R(w0 − p0))

)
.
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Setting c0 = p0 +f0 yields Πc(w0) as an upper bound on the household's payo� from staying.

This bound is tight. For any (c0, f0) that satis�es (4) and (5), it is an equilibrium

to set p0 = c0 − f0 ≥ 0, play a household-optimal continuation equilibrium on-path, and

respond to any deviation with the household leaving and ft = 0 in all future periods.2 Thus,

Πc(·) is the household's maximum equilibrium payo� conditional on staying. It follows that

Π∗(w) = max{Π̂(w),Πc(w)}. Since Πc(·) is strictly increasing by inspection and Π̂(·) is

strictly increasing by Proposition 1, Π∗(·) is strictly increasing. �

The next four lemmas characterize household-optimal equilibria in the community. First,

we show that households that stay in the community, stay forever.

Lemma 2 If w0 ≥ 0 is such that Π∗(w0) > Π̂(w0), then in any t ≥ 0 of any household-

optimal equilibrium, Π∗(wt) > Π̂(wt) on the equilibrium path.

Proof of Lemma 2: Suppose t > 0 is the �rst period in which Π∗(wt) = Π̂(wt). Let

{ct−1, ft−1} achieve Πc(wt−1). Since Π∗(wt) = Π̂(wt), (5) implies ft−1 = 0. The household

therefore earns a higher payo� by exiting in t−1 and choosing the same ct−1. This contradicts

Π∗(wt−1) > Π̂(wt−1). �

Second, we bound consumption from above in the community.

Lemma 3 Fix w0 ∈ {w : Π∗(w) > Π̂(w)}, and let {ct}∞t=0 be consumption in a household-

optimal equilibrium. Then U ′(ct) ≥ 1 in all t ≥ 0.

Proof of Lemma 3: Consider a household in the community with wealth wt, and suppose

U ′(ct) < 1 in period t. If ft > 0, consider decreasing ft and ct by ε > 0. Doing so is feasible

and increases the household's payo� at rate 1− U ′(ct) > 0 as ε→ 0.

Suppose ft = 0, and let τ > t be the �rst period after t such that fτ > 0. Consider

decreasing pt and ct by ε > 0, increasing pτ by χ(ε), and decreasing fτ by χ(ε), where χ(ε)

is chosen so that wτ+1 remains constant. Then, χ(ε) ≥ ε
δτ−t

because R′(·) ≥ 1
δ
. As ε → 0,

2If ft = 0 in all t ≥ 0, then the household is willing to leave because U ≤ Û .
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this perturbation increases the household's payo� by at least δτ−t 1
δτ−t
− U ′(ct) > 0. It is an

equilibrium because fs = 0 for all s ∈ [t, τ − 1], so (5) still holds in these periods.

We conclude that if U ′(ct) < 1, then fs = 0 in all s ≥ t. But then Πc(wt) < Π̂(wt), so

Πc(w0) ≤ Π̂(w0) by Lemma 2. Contradiction of w0 ∈ {w : Π∗(w) > Π̂(w)}. �

Third, we show that wealthy households leave the community, while poorer households

stay.

Lemma 4 The set
{
w : Π∗(w) > Π̂(w)

}
has positive measure. Moreover,

wse ≡ sup
{
w : Π∗(w) > Π̂(w)

}
satis�es 0 < wse <∞.

Proof of Lemma 4: First, we show that Π∗(0) > Π̂(0) = 0. Because limc↓0 U
′(c) = ∞,

there exists a c > 0 such that c ≤ δU(c). Suppose that in all t ≥ 0, ft = ct = c and pt = 0

on the equilibrium path. Any deviation is punished by ft = 0 in all future periods and

the household immediately exiting. This strategy delivers a strictly positive payo�. It is

an equilibrium because c ≤ δU(c) implies (5). Thus, Π∗(0) > 0. Since Π∗(w) is increasing

and Π̂(w) is continuous, there exists an open interval around 0 such that Π∗(w) > Π̂(w). So{
w : Π∗(w) > Π̂(w)

}
has positive measure.

Next, we show that wse < ∞. Let c̄ satisfy U ′(c̄) = 1. From Lemma 3, we know that

Π∗(w) ≤ U(c̄) for every w ∈ {w : Π∗(w) > Π̂(w)}. For any w0 such that R(w0− c̄) ≥ w0, the

household can set pt = ct = c̄ in every t ≥ 0 in the city. For such w0, Π̂(w0) > Û(c) > U(c),

so wse satis�es R(wse − c̄) < w0 and hence wse <∞. �

Finally, household-optimal equilibria exhibit monotone wealth dynamics.

Lemma 5 In any household-optimal equilibrium, (wt)
∞
t=0 is monotone.

The (tedious) proof of Lemma 5 is relegated to Appendix A. The key step of this proof

shows that household-optimal investment, wt − pt, increases in wt. Wealth dynamics are

therefore monotone: if w1 ≥ w0, then w2 = R(w1 − p1) ≥ R(w0 − p0) = w1 and so on, and

similarly if w1 ≤ w0.
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We can now prove Proposition 2.

Selection: Follows immediately from Lemma 2. The set W has positive measure by

Lemma 4. By the proof of Lemma 4, R(wse− c̄) < c̄, so Assumption 1 implies that wse < w̄.

�

Treatment: We argue that there exists wc < wse such that for any wt ∈ (wc, wse), if

the household stays in the community, then wt+1 ≤ wc. Consider wt < wse, and suppose

wt+1 > wc. Since Π∗(·) is increasing, (5) holds only if

ft ≤ ∆(wt) ≡
δ

1− δ
(Π∗(wse)− Π̂(wt)).

Proposition 1 implies that ∆(wt) is strictly decreasing and continuous.

Continuity implies that limw↑wse Π̂(w) = Π̂(wse). If Π∗(wse) > Π̂(wse), then Π∗(·) increas-

ing and Π̂(·) continuous imply Π∗(w) > Π̂(w) just above wse, contradicting the de�nition of

wse. Therefore, Π∗(wse) = Π̂(wse) and limw↑wse ∆(w) = 0.

Next, we construct wc. For any w ∈ [R−1(wse), wse], de�ne

G(w) ≡ Û(w −R−1(wse))− (U(wse −R−1(w) + ∆(w)) + ∆(w)).

Then, G(·) is strictly increasing, continuous, and strictly crosses 0 from below. De�ne

wc ∈ (R−1(wse), wse) as the unique wealth such that G(wc) = 0.

Suppose wt > wc satis�es Πc(wt) > Π̂(wt), with corresponding household-optimal choices

(ct, pt, t). Towards contradiction, suppose wt+1 > wc. Then, this household can exit and

choose ĉt = p̂t = pt = ct − ft and f̂t = 0, where pt ≥ 0 because wc ≥ R−1(wse). This

deviation leaves wt+1 unchanged and results in continuation payo� Π̂(wt+1).
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This deviation is pro�table:

(1− δ)Û(ĉt) + δΠ̂(wt+1) ≥ (1− δ)Û(ct − ft) + δΠ̂(wc)

> (1− δ)(U(ct) + ∆(wc)) + δΠ̂(wc)

= (1− δ)(U(ct) + ∆(wc)) + δΠ∗(wse)− (1− δ)∆(wc)

= (1− δ)U(ct) + δΠ∗(wse)

≥ (1− δ)U(ct) + δΠ∗(wt+1)

= Π∗(wt).

Here, the �rst line follows from ĉt = ct−ft and wt+1 ≥ wc; the second line is proven below; the

third line from the de�nition of ∆(wc); and the �fth line because, by Lemma 2, wt+1 ≤ wse.

The fourth and sixth lines are algebra.

The second line follows because for any wt > wc, Û(ct−ft) > U(ct)+∆(wc). To see this,

note that

wse ≥ wt+1 = R(wt − pt) > R(wc − pt).

Hence, pt > wc −R−1(wse). Similarly,

wc < wt+1 = R(wt − pt) ≤ R(wse − pt),

so pt < wse −R−1(wse). Therefore,

Û(ct − ft) = Û(pt) > Û(wc −R−1(wse))

≥ U(wse −R−1(wc) + ∆(wc)) + ∆(wc)

> U(pt + ∆(wc)) + ∆(wc)

≥ U(pt + ∆(wt)) + ∆(wc)

≥ U(ct) + ∆(wc).

Here, the �rst and third lines follow from wse − R−1(wc) > pt > wc − R−1(wse); the second

line from G(wc) = 0; the fourth line from the fact that wc < wt and ∆(·) strictly decreasing;
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and the last line from pt + ∆(wt) ≥ pt + ft = ct.

The household therefore has a pro�table deviation if wt+1 > wc, so wt+1 ≤ wc whenever

wt ∈ (wc, wse). Since (wt)
∞
t=0 is monotone by Lemma 5, it converges. Hence, limt→∞wt ≤

wc ≡ wtr.

The �nal step is to showW∩ (wc, wse) has positive measure. By de�nition of wse, we can

�nd w ∈ (wc, wse) such that Π∗(w) > Π̂(w). Since Π∗(·) is increasing and Π̂(·) is continuous,

Π∗(·) > Π̂(·) on an open set around w. �

5 Policy Simulations

This section explores how policies can help left-behind communities. Most such policies are

person-based, in the sense that they are available to households regardless of where the

reside. However, policy-makers have recently proposed two other approaches that condition

on the household's location. Mobility-based policies, such as the �Moving to Opportunity�

housing program in the United States, encourage households to move to areas with greater

opportunities (Katz et al. 2001, Chetty et al. 2016). Place-based policies, in contrast,

provide business subsidies, infrastructure, and other bene�ts that are only accessible to

those who stay in their community (Austin et al. 2018, Bartik 2020).

Figure 3: Simulated e�ects of person-, mobility-, and place-based policies.

Using numerical simulations, we illustrate that mobility- and place-based approaches
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have contrasting e�ects on wealth and welfare. We model each type of policy as increasing

the household's per-period utility by a small amount. Mobility-based policies provide this

per-period bene�t only after the household moves to the city; place-based policies provide

this bene�t only while the household remains in the community; and person-based policies

provide this bene�t regardless of the household's location. We assume that following a

deviation, the household either leaves the community, or it stays and plays the optimal

equilibrium subject to the constraint ft = 0.3

Figure 3 presents these simulations. Person-based policies do not a�ect the household's

relative payo� from the community versus the city. Therefore, such policies increase the

household's payo� but do not substantially in�uence either selection or wealth dynamics.

In contrast, both mobility- and place-based policies directly in�uence wealth dynamics.

Mobility-based policies disproportionately increase the household's payo� from leaving the

community. Such policies therefore induce households with wealth near wse to leave. How-

ever, those that remain in the community face a higher outside option and so can engage in

less favor exchange. To mitigate this e�ect, these households invest even less, exacerbating

the �too big for their boots� e�ect and decreasing wtr. Mobility-based policies therefore

bene�t households that leave while discouraging investment and decreasing welfare for those

less-wealthy households that stay.

Place-based policies have the opposite e�ect. Since such policies increase the payo� from

staying in the community relative to leaving, households in the community can engage in

more favor exchange, mitigating the �too big for their boots� e�ect and increasing wtr. The

direct bene�t of a place-based policy is therefore compounded by an equilibrium e�ect on

investment, which suggests place-based policies can provide outsized bene�ts to left-behind

communities.4

A similar multipler e�ect arises from bene�ts provided by the community itself. In our

3We impose this assumption because place-based policies can a�ect the household's punishment payo� by

inducing them to stay following a deviation. This assumption gives us an upper bound on the household's

punishment payo�.
4Austin et al. 2018 develops other justi�cations for implementing place-based policies.
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model, the only reason for staying in the community is to engage in favor exchange. In

practice, however, communities provide a sense of belonging, a platform for family, social,

and religious interactions, and myriad other bene�ts. Like place-based policies, these bene�ts

encourage households to remain part of the community, mitigating the �too big for their

boots� e�ect and encouraging wealth accumulation. Consistent with this observation, some

researchers have argued that tight-knit immigrant communities with limited outside options

tend to build wealth relatively quickly (e.g., Portes and Sensenbrenner 1993).

6 Conclusion

Understanding the prevalence and persistence of �left behind� communities requires that we

understand the social constraints faced by those experiencing poverty. This paper studies the

sacri�ces that households make in order to access support from their communities. We argue

that those who grow their wealth risk being excluded from exchange. Thus, although the

community improves the welfare of its members, it does so only at the cost of discouraging

investment, dampening wealth accumulation, and deepening long-term inequality.
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A Routine Proofs

A.1 Proof of Proposition 1

Suppose that the household lives in the city. In any period t, since future vendors don't

observe f_{t}, the household always chooses ft = 0. Hence, vendor t accepts only if pt ≥ ct.

This means that ct ∈ [0, wt] are the feasible consumptions, so that the household's equilibrium

continuation payo� is at most Π̂(wt) given wealth wt.

The following equilibrium gives the household an equilibrium continuation payo� of

Π̂(wt). In period t, (i) the household proposes (ct, pt) = (Ĉ(wt), Ĉ(wt)); (ii) vendor t accepts

if and only if pt ≥ ct. Vendor t has no pro�table deviation. This strategy attains Π̂, so the

household has no pro�table deviation either.

Let {c∗t}∞t=0 be the consumption sequence in the equilibrium above, given initial wealth

w. If w = 0, then c∗t = 0 in all t ≥ 0, so Π̂(0) = Û(0) = 0 is the unique equilibrium payo�.

If w > 0, then it must be true that c∗t > 0 in every t ≥ 0. Suppose otherwise. If c∗0 > 0, then

let τ > 0 be the �rst period in which c∗t = 0. Consider the perturbation cτ−1 = c∗τ−1 − ε,

cτ = c∗τ + ε for some small ε > 0. Since limc↓0 Û
′(c) = ∞, this perturbation gives a strictly

higher payo�, and it is feasible because R′(·) ≥ 1. If c∗0 = 0 instead, then let τ > 0 be the

�rst period in which c∗τ > 0. Then the perturbation cτ−1 = c∗τ−1 + ε, cτ = c∗τ − ε again gives

a strictly higher payo� for ε > 0 small. Hence, c∗t > 0 in every t ≥ 0.

Next, we show that Π̂(w) is the household's unique equilibrium payo�. At w = 0,

Π̂(0) = 0, so the household's unique equilibrium payo� is indeed Π̂(0). For w > 0, the

household can choose (ct, pt) = ((1 − εt)c
∗
t , c
∗
t ) in every t ≥ 0 for εt > 0 small. Vendor t

strictly prefers to accept. As εt ↓ 0 for all t ≥ 0, the consumption sequence {(1 − εt)c∗t}∞t=0

gives the household a payo� that converges to Π̂(w). So the household must earn at least

Π̂(w) in any equilibrium.

Turning to properties of Π̂(·), we claim that Π̂(·) is strictly increasing. Pick 0 ≤ w < w̃.

Let {c∗t}∞t=0 be the sequence associated with w. If the initial wealth is w̃, it is feasible to
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choose c0 = c∗0 + w̃−w and ct = c∗t for t ≥ 1. Since Û(·) is strictly increasing, so too is Π̂(·).

It remains to show that Π̂(·) is continuous for all w > 0. If w > 0, then Ĉ(w) > 0. For

w̃ su�ciently close to w, setting c0 = Ĉ(w) + (w̃ − w) and ct = Ĉ(wt) for t ≥ 1 is feasible.

The household's payo�s converge to Π̂(w) as w̃ → w under this perturbation, which means

that limw̃↑w Π̂(w̃) ≥ Π̂(w) and limw̃↑w Π̂(w̃) ≥ Π̂(w). Since Π̂(·) is increasing, we conclude

that Π̂(·) is continuous at every w > 0.

We now show that Π̂(·) is continuous at w = 0. Consider limw↓0 Π̂(w). Since R′(w̄) = 1
δ
,

the line tangent to R(·) at w̄ is R̂(w) = R(w̄) + w−w̄
δ

. Since R(·) is concave, R(w) ≤ R̂(w)

for all w ≥ 0. Therefore, Π̂(w) is bounded from above by the household's maximum payo�

if we replace R(·) with R̂(·). For consumption path {ct}∞t=0 to be feasible under R̂(·), it must

satisfy

(1− δ)
∞∑
t=0

δtct ≤ (1− δ)w0 + δR(w̄)− w̄.

This means that the payo� of a household with initial wealth w0 is at most

Û((1− δ)w0 + δR(w̄)− w̄).

Pick any small ε > 0. There exists T <∞ and su�ciently small w0 > 0 such that

δT Û
(
(1− δ)RT (w0) + δR(w̄)− w̄

)
<
ε

2
,

where RT (w0) denotes the function that applies R(·) T -times to w0.

Consider a hypothetical setting that is more favorable to the household: we allow the

household to both consume and save her wealth until period T , after which she must play

the original city game. The household's payo� from this hypothetical is strictly larger than

Π̂(w0) and is bounded from above by

(1− δ)
T−1∑
t=0

δt(Û(Rt(w0)) + δT Û((1− δ)RT (w0) + δR(w̄)− w̄).
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As w0 ↓ 0, RT (w0) ↓ 0, so Rt(w0) ↓ 0 for any t < T . Thus,

Π̂(w0) ≤ (1− δ)
T−1∑
t=0

δtÛ(Rt(w0)) + δT Û((1− δ)RT (w0) + δR(w̄)− w̄) < ε.

This is true for any ε > 0, so limw↓0 Π̂(w) = 0.

Finally, consider any equilibrium in the city. If w0 = 0, then wt = 0 in any t ≥ 0. If

w0 > 0, then we have shown that ct > 0 in every t ≥ 0, so wt > ct > 0. A standard argument

(see below) implies the following Euler equation:

Û ′(ct) = δR′(wt − ct)Û ′(ct+1). (6)

Together with R′(·) ≥ 1
δ
and U(·) strictly concave, (6) implies ct ≤ ct+1, and strictly so if

wt < w̄.

Next, we argue that Ĉ(·) is strictly increasing in w. Let {ct}∞t=0 and {c̃t}∞t=0 be the

equilibrium consumption sequences for w > 0 and w̃ > w, respectively. Suppose c0 ≥ c̃0,

and let τ ≥ 1 be the �rst period such that ct < c̃t, which must exist because Π̂(·) is strictly

increasing. Then, cτ−1 ≥ c̃τ−1, wτ−1 − cτ−1 < w̃τ−1 − c̃τ−1, and cτ < c̃τ , so at least one

of (cτ−1, wτ−1, cτ ) and (c̃τ−1, w̃τ−1, c̃τ ) violates (6). Hence, Ĉ(w) is strictly increasing in w.

Therefore, ct+1 ≥ ct implies wt+1 ≥ wt, with strict inequalities if wt ≤ w̄.

Since (wt)
∞
t=0 is monotone, it converges on R+ ∪ {∞}. Suppose limt→∞wt < w̄. Then,

R′(wt) is uniformly bounded away from 1
δ
. But ct = wt − R−1(wt+1), so (ct)

∞
t=0 converges.

Hence, (6) is violated as t→∞. We conclude that limt→∞wt ≥ w̄. �

A.2 Deriving the Euler Equation

Consider a household in the city, and let its optimal consumption and wealth sequence be

{c∗t , w∗t }∞t=0. We prove that if w0 > 0, then

Û ′(c∗t ) = δR′(w∗t − c∗t )Û ′(c∗t+1)
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in every t ≥ 0.

The proof of Proposition 1 says that c∗t > 0, c∗t+1 > 0, and w∗t − c∗t > 0. Suppose that

Û ′(c∗t ) > δR′(w∗t − c∗t )Û ′(c∗t+1). Then, we can perturb (c∗t , c
∗
t+1) to (c∗t + ε, c∗t+1− χ(ε)), where

χ(ε) is chosen such that w∗t+2 remains the same as before the perturbation. In particular,

R(w∗t − (c∗t + ε))− (c∗t+1 − χ(ε)) = R(w∗t − c∗t )− c∗t+1.

Hence, χ′(ε) = R′(w∗t − (c∗t + ε)).

As ε ↓ 0, this perturbation strictly increases the household's payo�:

lim
ε↓0

{
Û ′(c∗t + ε)− δÛ ′(c∗t+1 − χ(ε))χ′(ε)

}
= lim

ε↓0

{
Û ′(c∗t + ε)− δÛ ′(c∗t+1 − χ(ε))R′(w∗t − c∗t − ε)

}
= Û ′(c∗t ) + δR′(w∗t − c∗t )Û ′(c∗t+1) > 0.

This contradicts the fact that (c∗t , c
∗
t+1) is optimal. Using a similar argument, we can show

that Û ′(c∗t ) < δR′(w∗t − c∗t )Û ′(c∗t+1) is not possible either. �

A.3 Proof of Lemma 5

We break the proof of this lemma into four steps.

A.3.1 Step 1: Locally Bounding the Slope of Π∗(·) From Below

We claim that for any w ∈ [0, wse), there exists εw > 0 such that for any ε ∈ (0, εw),

Π∗(w + ε)− Π∗(w) > (1− δ)ε.

First, suppose Π̂(w) ≥ Πc(w), and let {wt, ct}∞t=0 be the wealth and consumption se-

quences if the household enters the city. Assumption 1 and the proof of Lemma 4 imply

R(wse− c̄) < wse, so R(w0− c̄) < w0. Proposition 1 says that {wt}∞t=0 is increasing, so c0 < c̄.

Hence, there exists εw > 0 such that U ′(c0 + εw) > 1.
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For any ε < εw, if w0 = w+ε, then the household can enter the city and choose ĉ0 = c0+ε,

with ĉt = ct in all t > 0. We can bound Π∗(w+ε) from below by the payo� from this strategy,

Π∗(w + ε) ≥ (1− δ) (U(c0 + ε)− U(c0)) + Π̂(w) > (1− δ)ε+ Π̂(w) = (1− δ)ε+ Π∗(w).

We conclude that Π∗(w + ε)− Π∗(w) > (1− δ)ε, as desired.

Now, suppose Π̂(w) < Πc(w). Let {wt, ct, ft}∞t=0 be the wealth, consumption, and reward

sequence in a household-optimal equilibrium. There exists τ ≥ 0 such that fτ > 0 for the �rst

time in period τ ; otherwise, the household could implement the same consumption sequence

in the city. Choose εw > 0 to satisfy εw < δτfτ .

For ε ∈ (0, εw) and initial wealth w0 = w + ε, consider the perturbed strategy such that

ŵt = wt, ĉt = ct, and f̂t = ft in every period except τ . In period τ , f̂τ = fτ − ε
δτ

and

p̂τ = pτ + χ, where χ is chosen so that ŵt+1 = wt+1. Then, ĉτ = cτ + χ − ε
δτ
. Since the

household stays in the community forever by Lemma 2, wt ≤ wse for all t ≤ τ , which together

with R(wse − c̄) < wse and Assumption 1, implies R′(wt − pt) > 1
δ
. Hence, χ > ε

δτ
.

Under this perturbed strategy, (5) is satis�ed in all t < τ because ft = 0 in these periods;

in t = τ because f̂τ < fτ and ŵτ+1 = wτ+1; and in t > τ because play is unchanged after τ .

Moreover, fτ − ε
δτ
> 0 because ε < εw, and f̂τ + p̂τ = ĉτ , so this strategy is feasible. Thus, it

is an equilibrium. Consequently, Π∗(w+ ε) is bounded from below by the household's payo�

from this strategy,

Π∗(w + ε) > (1− δ)δτ ε
δτ

+ Πc(w) = (1− δ)ε+ Π∗(w),

as desired.

A.3.2 Step 2: Moving from Local to Global Bound on Slope

Next, we show that for any 0 ≤ w < w′ < wse, Π∗(w′)− Π∗(w) > (1− δ)(w′ − w).
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Let

z(w) = sup{w′′|w < w′′ ≤ wse, and ∀w′ ∈ (w,w′′],Π∗(w′)− Π∗(w) > (1− δ)(w′ − w)}.

By Step 1, z(w) ≥ w exists. Moreover,

Π∗(z(w))− Π∗(w) ≥ lim
w̃↑z(w)

Π∗(w̃)− Π∗(w) ≥ (1− δ)(z(w)− w),

where the �rst inequality follows because Π∗(·) is increasing, and the second inequality follows

by de�nition of z(w).

Suppose that z(w) < wse. By Step 1, there exists εz(w) such that for any ε < εz(w),

Π∗(z(w) + ε)− Π∗(z(w)) > (1− δ)ε.

Hence,

Π∗(z(w)+ε)−Π∗(w) = Π∗(z(w)+ε)−Π∗(z(w))+Π∗(z(w))−Π∗(w) > (1−δ)ε+(1−δ)(z(w)−w).

This contradicts the de�nition of z(w), so z(w) ≥ wse.

For any w′ < wse, w′ < z(w) and so Π∗(w′)− Π∗(w) > (1− δ)(w′ − w), as desired.

A.3.3 Step 3: Investment is increasing in wealth.

Consider two wealth levels, 0 ≤ wL < wH < wse, and suppose that Πc(wL) > Π̂(wL) and

Πc(wH) > Π̂(wH). Given any household-optimal equilibria, let pH , pL be the respective

period-0 payments under wH , wL. We prove that wH − pH ≥ wL − pL. De�ne Ik ≡ wk − pk,

k ∈ {L,H}. Towards contradiction, suppose that IH < IL.

We �rst show that cH > cL + (wH − wL). Suppose instead that cH ≤ cL + (wH − wL).
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Since IH < IL, we have pH > pL + (wH − wL). But then fH < fL, since

fH = cH − pH < cH − (pL + (wH − wL)) ≤ cL + (wH − wL)− (pL + (wH − wL)) = fL.

Consider the following perturbation: p̂H = pL+ (wH −wL) ∈ (pL, pH), f̂H = fH +pH − p̂H ≥

fH , and ĉH = cH . Under this perturbation, ÎH = wH − p̂H = IL. Thus, to show that the

perturbation satis�es (5), we need only show that f̂H ≤ fL. Indeed:

f̂H = fH+pH−(pL+(wH−wL)) = cH−(cL−fL)−(wH−wL) = fL+cH−(cL+wH−wL) ≤ fL,

where the �nal inequality holds because cH ≤ cL + (wH − wL) by assumption. Thus, this

perturbation is also an equilibrium.

We claim that a household with initial wealth wH strictly prefers this equilibrium to the

original equilibrium, which is true so long as

(1− δ)(U(cH)− f̂H) + δΠ∗(R(IL)) > (1− δ)(U(cH)− fH) + δΠ∗(R(IH))

⇐⇒ (1− δ)(f̂H − fH) < δ(Π∗(R(IL))− Π∗(R(IH)))

⇐⇒ (1− δ)(pH − p̂H) < δ(Π∗(R(IL))− Π∗(R(IH))).

We know that IL = IH+pH−p̂H . Since the household stays in the community, IH < IL < wse,

so R′(IH), R′(IL) > 1
δ
. Thus,

R(IL)−R(IH) >
1

δ
(IL − IH) =

1

δ
(pH − p̂H).

By Step 2, Π∗(·) increases at rate strictly greater than (1− δ), so we conclude

δ(Π∗(R(IL))− Π∗(R(IH))) > δ(1− δ)1

δ
(pH − p̂H),

as desired. Thus, if IH < IL, then cH > cL + (wH − wL).
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We are now ready to prove that IH < IL contradicts household optimality. To do so, we

consider two perturbations: one at wL and one at wH . At wH , consider setting

ĉH = cL + (wH − wL) > cL ≥ 0,

p̂H = pL + wH − wL ∈ (pL, wH ],

f̂H = ĉH − p̂H = fL.

By construction, wH− p̂H = IL. Thus, f̂H satis�es (5) because fL does. Moreover, p̂H+ f̂H =

ĉH , so the neighbor is willing to accept. This perturbed strategy is therefore an equilibrium.

For the original equilibrium to be household-optimal, we must therefore have

(1− δ)(U(cH)− fH) + δΠ∗(R(IH)) ≥ (1− δ)(U(ĉH)− f̂H) + δΠ∗(R(ÎH)). (7)

At wL, consider setting

ĉL = cH − (wH − wL) > cL ≥ 0,

p̂L = pH − (wH − wL) ∈ (pL, wL]

f̂L = ĉL − p̂L = fH .

,

By construction, wL − p̂L = IH . Thus, f̂L satis�es (5) because fH does. This perturbed

strategy is again an equilibrium, so the original equilibrium is household-optimal only if

(1− δ)(U(cL)− fL) + δΠ∗(R(IL)) ≥ (1− δ)(U(ĉL)− f̂L) + δΠ∗(R(ÎL)). (8)

Combining (7) and (8) and plugging in de�nitions, we have

U(cH)− U(cH − (wH − wL)) ≥ U(cL + (wH − wL))− U(cL).

However, cH > cL+wH−wL and U(·) is strictly concave, so this inequality cannot hold. Thus,

if IH < IL, then at least one of the equilibria at wH and wL cannot be household-optimal.
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A.3.4 Step 4: Establishing Monotonicity

We have shown that investment, I(w), is increasing in w. Consider a household-optimal

equilibrium with w1 ≥ w0. Then, I(w1) ≥ I(w0), so w2 = R(I(w1)) ≥ R(I(w0)) = w1. Thus,

w2 ≥ w1, and wt+1 ≥ wt for all t > 1 by the same argument. Similarly, if w1 ≤ w0, then

I(w1) ≤ I(w0), w2 ≤ w1, and wt+1 ≤ wt in all t ≥ 0. We conclude that (wt)
∞
t=0 is monotone

in any household-optimal equilibrium. �

B Reversible Exit

B.1 Household can return to the community

This appendix shows that mis-investment occurs even if the household can return to the

community after leaving for the city. Formally, we modify the game in Section 2 so that at

the start of every period while the household is in the city, it can return to the community. If

it does, then it plays the community game until it again chooses to leave for the city. Payo�s

and information structures are the same as in Section 2, and so neighbors observe all of the

household's interactions with neighbors, while vendors observe only their own interactions.

We impose a slightly stronger version of Assumption 1.

Assumption 2 De�ne c̄m as the solution to Û ′(c̄m) = 1, and let ŵm satisfy R(ŵm − c̄m) =

ŵm. Then, R
′(ŵm) > 1

δ
.

Under this assumption, we can prove that mis-investment occurs even if exit is reversible.

Proposition 3 Impose Assumption 2. There exists a w∗∗, a wcc < w∗∗, and a positive-

measure interval W ⊆ [0, w∗∗) such that the household permanently exits the community if

w0 /∈ W. If w0 ∈ W, then in any household-optimal equilibrium, the household is in the

community for an in�nite number of periods.
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Moreover, if w0 /∈ W, then in any equilibrium,

lim
t→∞

wt > w∗∗,

while if w0 ∈ W, then for every t ≥ 0, wt < w∗∗. Moreover, wt+1 < wt whenever wt ∈

(wcc, w∗∗).

B.1.1 Proof of Proposition 3

Much like the proof of Proposition 2, we break this proof into a sequence of lemmas. We begin

by showing that the household's worst equilibrium payo� equals Π̂(·), its worst equilibrium

payo� from the game with reversible exit.

Lemma 6 For any initial wealth w ≥ 0, the household's worst equilibrium payo� is Π̂(·).

Proof of Lemma 6: This proof is similar to the proof of Proposition 1. It is an equilibrium

for ft = 0 in every t ≥ 0, in which case it is optimal for the household to permanently leave

the community. In the city, vendor t accepts only if pt ≥ ct. Therefore, Π̂(·) gives the

maximum equilibrium payo� if the household permanently leaves the community. But as in

the proof of Proposition 1, the household cannot earn less than Π̂(·), because vendor t must

accept whenever pt > ct. �

Now, we turn to the household's maximum equilibrium payo�. De�ne Π∗∗(w) as the

maximum equilibrium payo� with initial wealth w. De�ne Π∗c(·) identically to Πc(·), except

that Π∗(·) is replaced by Π∗∗(·). De�ne

Π∗m(w) ≡ max
0≤c≤w

{
(1− δ)Û(c) + δΠ∗∗(R(w − c))

}

as the household's maximum equilibrium payo� if it chooses the city in the current period.

The key di�erence between this model and the baseline model is that Π∗m(·) might entail
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the household returning to the community to take advantage of relational contracts in the

future. Therefore, Π∗m(·) ≥ Π̂(·), since the latter entails staying in the city forever.

Lemma 7 Both Π∗c(·) and Π∗m(·) are strictly increasing. For all w ≥ 0, Π∗∗(w) ≡ max {Π∗c(w),Π∗m(w)}.

Proof of Lemma 7: By Lemma 6, the household earns no less than Π̂(·) following a

deviation. As in Lemma 1, conditional on choosing the community in period 0, the house-

hold's maximum equilibrium payo� equals Π∗c(w0). If the household instead chooses the

city in period t, then ft = 0 in any equilibrium., since the continuation equilibrium is in-

dependent of ft. Thus, the household optimally sets pt = ct, so its maximum equilibrium

continuation payo� equals Π∗∗(R(w− c)). We conclude that Π∗m(w) is the household's max-

imum equilibrium payo� conditional on choosing the city. It then immediately follows that

Π∗∗(w) ≡ max {Π∗c(w),Π∗m(w)}. Both Π∗c(·) and Π∗m(·) are strictly increasing by inspection.

�

Apart from some details of the proof, the next result is similar to Lemma 2.

Lemma 8 If Π∗∗(w0) > Π̂(w0), then Π∗∗(wt) > Π̂(wt) in all t ≥ 0 of any household-optimal

equilibrium.

Proof of Lemma 8: Suppose not, and let τ > 0 be the �rst period such that Π∗∗(wτ ) =

Π̂(wτ ). In period τ − 1, (5) implies that ft = 0 if the household stays in the community.

Therefore, it is optimal for the household to leave the community in τ − 1. But then it is

optimal for the household to permanently leave the community in τ − 1, since Π∗∗(wτ ) =

Π̂(wτ ). So Π∗∗(wτ−1) = Π̂(wτ−1), contradicting the de�nition of τ . �

Our next result is the analogue to Lemma 3 in this setting.

Lemma 9 Suppose that Π∗∗(w0) > Π̂(w0). Then in every t ≥ 0, Û ′(ct) ≥ 1, and there exists

τ > t such that the household stays in the community in period τ .
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Proof of Lemma 9: Towards contradiction, suppose that there exists t ≥ 0 such that

Û ′(ct) < 1, so that a fortiori, U ′(ct) < 1. If ft > 0, then we can decrease ft and ct by the

same ε > 0. This perturbation is also an equilibrium, and increases the household's period-t

payo� at rate 1− Û ′(ct) > 0 as ε→ 0. Thus, ft = 0, which implies that pt = ct > 0.

By Lemma 8, Π∗(wt+1) > Π̂(wt+1). Therefore, there exists a τ > t such that fτ > 0, since

otherwise the household could do no better than exiting the city permanently. Let τ be the

�rst period after t such that fτ > 0. Note that the household must be in the community in

period τ .

Consider the following perturbation: decrease pt and ct by ε > 0, and increase pτ and

decrease fτ by χ(ε), where χ(ε) is chosen so that wτ+1 remains constant. Then, χ(ε) ≥ ε
δτ−t

because R′(·) ≥ 1
δ
. As ε→ 0, χ(ε)→ 0. Hence, this perturbation is feasible for small enough

ε > 0. It is an equilibrium, since (5) is trivially satis�ed in all t′ ∈ [t, τ − 1] because ft′ = 0

in those periods. This perturbation changes the household's period-t continuation payo� at

rate no less than

−(1− δ)Û ′(ct) + δτ−t(1− δ) 1

δτ−t
> 0

as ε→ 0. Thus, the original equilibrium could not have been household-optimal. �

Next, we show that the household stays in the community for su�ciently low initial

wealth levels.

Lemma 10 The set {
w|Π∗∗(w) > Π̂(w)

}
has positive measure, with

w∗∗ ≡ sup
{
w|Π∗∗(w) > Π̂(w)

}
<∞.

Proof of Lemma 10: The proof that
{
w|Π∗∗(w) > Π̂(w)

}
is identical to the proof in

Lemma 4, since the same constructions work at w = 0, Π∗∗(·) is increasing, and Π̂(·) is

36



continuous. To prove that w∗∗ <∞, suppose w0 is such that

R(w0 − c̄m) > w0.

For any such w0,

Π̂(w0) > Û(c̄m) ≥ Π∗∗(w0),

where the second inequality follows by Lemma 9 and the assumption that Π∗∗(w) > Π̂(w).

Contradiction. So Π̂(w0) = Π∗∗(w0) for any w0 > ŵm. We conclude w∗∗ <∞. �

We are now in a position to prove Proposition 3. So far, the argument has hewn closely

to the proof of Proposition 2. The rest of the proof marks a more substantial departure.

Lemma 10 shows that a positive-measure set W exists such that Π∗∗(w0) > Π̂(w0) for all

w0 ∈ W . Lemma 8 implies that for any w0 ∈ W , we can construct an in�nite sequence of

periods such that the household remains in the community for each period in that sequence.

For any w0 /∈ W , Π∗∗(w0) = Π̂(w0) and so the household permanently exits the community.

This proves the �rst part of Proposition 3.

From the proof of Lemma 9, we know that w∗∗ ≤ ŵm. Assumption 2 then implies that

R′(w∗∗) > 1
δ
. As in the proof of Proposition 2, if the household permanently exits the

community, then wt is increasing, with limt→∞wt > w∗∗. This proves the second part of

Proposition 3.

Suppose w0 ∈ W . Then, Lemma 8 and the de�nition of w∗∗ immediately imply that

wt < w∗∗ in every t ≥ 0. It remains to identify a wcc < w∗∗ such that if w0 ∈ W , then

whenever wt ∈ (wcc, w∗∗) in a household-optimal equilibrium, wt+1 < wt. By an argument

similar to Proposition 2,

lim
w↑w∗∗

Π∗∗(w) = Π∗∗(w∗∗) = Π̂(w∗∗),

because Π∗∗(·) is increasing, Π̂(·) is continuous, Π∗∗(·) ≥ Π̂(·), and Π∗∗(w) = Π̂(w) for all
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w > w∗∗. Therefore, we can de�ne a wealth level wcc1 < w∗∗ similarly to wc in the proof of

Proposition 2.

De�ne the function

F (w) ≡ (1− δ)Û(w∗∗ −R−1(w)) + δΠ̂(w∗∗)− Π̂(w)

on w ∈ [0, w∗∗]. Then F (·) is strictly decreasing and continuous, with

F (0) = (1− δ)Û(w∗∗) + δΠ̂(w∗∗) > 0.

At w0 = w∗∗, it is feasible for the household to permanently leave the community and

consume ct = w∗∗−R−1(w∗∗) in each t ≥ 0. However, doing so violates (6), since R′(w∗∗) > 1
δ
.

Therefore, this consumption path must be dominated by some other feasible consumption

path once the household permanently leaves the community, which implies

Û(w∗∗ −R−1(w∗∗) < Π̂(w∗∗).

Consequently,

F (w∗∗) = (1− δ)Û(w∗∗ −R−1(w∗∗))− (1− δ)Π̂(w∗∗) < 0.

We conclude that there exists a unique wcc2 ∈ (0, w∗∗) such that F (wcc2) = 0.

Set wcc = max{wcc1, wcc2}. For any w0 ∈ (wcc, w∗∗) such that Π∗∗(w0) > Π̂(w0), the

household must either stay in the community or leave in t = 0. If it stays in the community,

then we can follow the steps of the proof of Proposition 2, Statement 3, to conclude that

wt+1 ≤ wcc1 < wt.

Suppose the household is in the city in t = 0. Towards contradiction, suppose that
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wt+1 ≥ wt. Therefore, the household's payo� satis�es

Π∗∗(w0) ≤ (1− δ)Û(w∗∗ −R−1(w0)) + δΠ∗∗(w∗∗)

= (1− δ)Û(w∗∗ −R−1(w0)) + δΠ̂(w∗∗)

< Π̂(w0),

where the �rst inequality follows because f0 = 0, so that p0 = c0 = w0 − R−1(w1) ≤

w∗∗−R−1(w0); the equality follows because Π∗∗(w∗∗) = Π̂(w∗∗), and the �nal, strict inequality

follows because w0 > wcc2 and so F (w0) < 0. But Π∗∗(·) ≥ Π̂(·), proving a contradiction. So

wt+1 < wt if the household is in the city in t = 0.

We conclude that if w0 ∈ W , then in any household-optimal equilibrium, wt < w∗∗ for

all t ≥ 0, and wt+1 < wt whenever wt > wcc. This completes the proof. �
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