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WhenSergio Zyman was the marketing chief of Coca-Cola, he once
indicated that his company, one of the world’s biggest advertisers, would put
less emphasis on traditional newspaper, magazine, and TV ads and more empha-
sis on new marketing techniques like special programs on cable TV and prod-
uct tie-ins with movies. All firms, not just Coke, must constantly reevaluate and
adjust their marketing strategies. As stressed repeatedly in previous chapters,
an effective manager must have a good working knowledge of the demand func-
tion for his or her firm’s products.

The previous two chapters were concerned with the theory of demand; now
we learn how to estimate a product’s demand function. Consumer surveys and
market experiments can be useful in providing such information, but the tech-
nique most frequently used to estimate demand functions is regression analysis.

While managers use some or all of these techniques (we mentioned the use
of focus groups by Dell Computer in Chapter 4), the technique most frequently
used to estimate demand functions is regression analysis (even much of the data
gathered by questionnaire and focus group is analyzed by regression). In Chap-
ter 3, we showed how Amtrak estimated its demand function with regression
analysis. Since regression analysis is used repeatedly in subsequent chapters to
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estimate production functions and cost functions and for forecasting, we devote
considerable attention to this basic technique in this chapter.

The Identification Problem
While it is very important that managers have reasonably accurate estimates of
the demand functions for their own (and other) products, this does not mean
that it is always easy to obtain such estimates. One problem that may arise in
estimating demand curves should be recognized at the outset. Given the task
of estimating the demand curve for a particular product, you might be inclined
to plot the quantity demanded of the product in 2003 versus its 2003 price, the
quantity demanded in 2002 versus its 2002 price, and so forth. If the resulting
plot of points for 2001 to 2003 were as shown in Figure 5.1, you might be
tempted to conclude that the demand curve is DD�.

Unfortunately, things are not so simple. Price, as we saw in Chapter 1, is
determined by both the demand and supply curves for this product if the 
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Price Plotted against Quantity, 2001–2003

The curve DD� is unlikely to be a good estimate of the demand curve.
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market is competitive. Specifically, the equilibrium value of price is at the level
where the demand and supply curves intersect. The important point to note is
that the demand and supply curves for this product may have been different
each year. So, as shown in Figure 5.2, the supply curve may have shifted (from
S01 in 2001 to S02 in 2002 to S03 in 2003), and the demand curve may have
shifted (from D01 in 2001 to D02 in 2002 to D03 in 2003). As indicated in Fig-
ure 5.2, DD� is not even close to being a good approximation to the demand
curve for this product in any of these three years.

In the situation in Figure 5.2, if you were to conclude that DD� was the
demand curve, you would underestimate (in absolute value) the price elasticity
of demand for this product in 2003 and 2002 and overestimate it (in absolute
value) in 2001. In 2003, you would think that, if price were lowered from $30
to $28, the quantity demanded would increase from 10 to 12 million units per
year. In fact, as shown in Figure 5.2, such a price reduction would result in an
increase of the quantity demanded to 18, not 12, million units per year. This is
a mammoth error in anyone’s book.
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Estimated Demand Curve Contrasted with Actual
Demand Curves

The estimated demand curve DD� is not at all similar to the actual demand curves.
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The point is that, because we are not holding constant a variety of non-
price variables like consumer tastes, incomes, the prices of other goods, and
advertising, we cannot be sure that the demand curve was fixed during the
period when the measurements were made. If the demand curve was fixed and
only the supply curve changed during the period, we could be confident that
the plot of points in Figure 5.1 represents the demand curve. As shown in Fig-
ure 5.3, the shifts in the supply curve trace out various points on the demand
curve we want to measure.

How can we estimate a demand curve if it has not remained fixed in the
past? There are many ways, some simple, some very complex. Econometric tech-
niques recognize that price and quantity are related by both the supply curve
and the demand curve and both these curves shift in response to nonprice vari-
ables. Some basic econometric techniques, such as regression analysis, are 
presented later in this chapter; others are too complex to be taken up here.1
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Fixed Demand Curve and Shifting Supply Curve

In this special case, DD� does represent the actual demand curve.
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1See J. Johnston, Econometric Methods (3d ed.; New York: McGraw-Hill, 1984); J. Kmenta, Ele-
ments of Econometrics (2d ed.; New York: Macmillan Co., 1986); or E. Berndt, The Practice of Econo-
metrics (Reading, MA: Addison-Wesley, 1991).
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Consumer interviews and market experiments are also widely used, as indicated
in the next three sections.

Consumer Interviews
To obtain information concerning the demand function for a particular prod-
uct, firms frequently interview consumers and administer questionnaires con-
cerning their buying habits, motives, and intentions. Firms may also run focus
groups in an attempt to discern consumers’ tastes. For example, a firm might
ask a random sample of consumers how much more gasoline they would pur-
chase if its price were reduced by 5 percent. Or, a market researcher might ask
a sample of consumers whether they liked a new type of perfume better than
a leading existing brand, and if so, how much more they would be willing to
pay for it (than for the existing brand).

Unfortunately, consumer surveys of this sort have many well-known lim-
itations. The direct approach of simply asking people how much they would
buy of a particular commodity at particular prices often does not seem to
work very well. Frequently, the answers provided by consumers to such a
hypothetical question are not very accurate. However, more subtle approaches
can be useful. Interviews indicated that most buyers of a particular baby food
selected it on their doctor’s recommendation and that most of them knew
very little about prices of substitutes. This information, together with other
data, suggested that the price elasticity of demand was quite low in absolute
value.2

Despite the limitations of consumer interviews and questionnaires, many
managers believe that such surveys can reveal a great deal about how their
firms can serve the market better. For example, the Campbell Soup Company’s
researchers contacted close to 110,000 people to talk about the taste, prepara-
tion, and nutritional value of food. On the basis of these interviews, Campbell
changed the seasonings in five Le Menu dinners and introduced a line of low-
salt soups (called Special Request). Some of the factors influencing the quality
of survey results can be quite subtle. For example, according to research find-
ings, there are sometimes advantages in respondents’ keypunching answers,
rather than verbalizing them, because the respondents tend to answer emotional
questions more honestly this way.3
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2J. Dean, “Estimating the Price Elasticity of Demand,” in E. Mansfield, ed., Managerial Economics
and Operations Research (4th ed.; New York: Norton, 1980).
3New York Times, November 8, 1987, p. 4F. Also, see W. Baumol, “The Empirical Determination of
Demand Relationships,” in Managerial Economics and Operations Research, ed. Mansfield.
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Market Experiments
Another method of estimating the demand curve for a particular commodity 
is to carry out direct market experiments. The idea is to vary the price of the
product while attempting to keep other market conditions fairly stable (or to
take changes in other market conditions into account). For example, a manu-
facturer of ink conducted an experiment some years ago to determine the price
elasticity of demand for its product. It raised the price from 15 cents to 25 cents
in four cities and found that demand was quite inelastic. Attempts were made
to estimate the cross elasticity of demand with other brands as well.

Controlled laboratory experiments can sometimes be carried out. Consumers
are given money and told to shop in a simulated store. The experimenter can
vary the prices, packaging, and location of particular products, and see the
effects on the consumers’ purchasing decisions. While this technique is useful,
it suffers from the fact that consumers participating in such an experiment know
that their actions are being monitored. For that reason, their behavior may
depart from what it normally would be.

Before carrying out a market experiment, weigh the costs against the ben-
efits. Direct experimentation can be expensive or risky because customers may
be lost and profits cut by the experiment. For example, if the price of a prod-
uct is raised as part of an experiment, potential buyers may be driven away.
Also, since they are seldom really controlled experiments and since they are
often of relatively brief duration and the number of observations is small, exper-
iments often cannot produce all the information that is needed. Nonetheless,
market experiments can be of considerable value, as illustrated by the follow-
ing actual case.

L’eggs: A Market Experiment
L’eggs Products, a subsidiary of the Hanes Corporation, markets L’eggs Panty-
hose, the first major nationally branded and advertised hosiery product distrib-
uted through food and drug outlets. According to some estimates, it has been
the largest-selling single brand in the hosiery industry. Jack Ward, group prod-
uct manager of the firm, was interested in determining the effect on sales of
four temporary promotion alternatives: a 40-cent price reduction for a package
containing two pairs, a 25-cent price reduction for a package containing two
pairs, a 20-cent price reduction per pair, and a coupon mailed to homes worth
25 cents off if a pair was purchased.4
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4The material in this section is based on F. DeBruicker, J. Quelch, and S. Ward, Cases in Consumer
Behavior (2d ed.; Englewood Cliffs, NJ: Prentice-Hall, 1986).
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To test these four promotion alternatives, Jerry Clawson, director of mar-
keting research, decided that each would be implemented in a carefully chosen
test market, and the results would be compared with another market where no
unusual promotion was carried out. Specifically, there was a 40-cent reduction
(for two pairs) in Syracuse, New York; a 25-cent reduction (for two pairs) in
Columbus, Ohio; a 20-cent reduction (for one pair) in Denver, Colorado; and a
25-cent coupon in Cincinnati, Ohio. The results in these markets were compared
with those in Boise, Idaho, where no special promotion occurred.

According to the firm’s sales research group, the results were as follows:
“The two for 40¢-off promotion (Syracuse) was the most effective with a net
short-term cumulative increase in sales of 53 percent felt over six weeks. The
20¢ price-off promotion (Denver) was the second most effective, with a net
cumulative short-term increase of 20 percent felt over eight weeks. . . . The 25¢
coupon promotion (Cincinnati) was the least effective with a 3 percent short-
term increase in sales felt over eight weeks.”5

This is an example of how firms go about obtaining information concern-
ing their market demand functions. In this case, the firm’s managers were inter-
ested in the effects of both the form and size of the price cut, and they were
concerned only with a temporary price cut. In other cases, firms are interested
in the effects of more long-term price changes or of changes in product char-
acteristics or advertising. But, regardless of these differences, marketing research
of this sort can play an important role in providing data for the estimation of
demand functions.

Regression Analysis
Although consumer interviews and direct market experiments are important
sources of information concerning demand functions, they are not used as often
as regression analysis. Suppose that a firm’s demand function is

Y � A � B1X � B2P � B3I � B4Pr (5.1)

where Y is the quantity demanded of the firm’s product, X is the selling expense
(such as advertising) of the firm, P is the price of its product, I is the dispos-
able income of consumers, and Pr is the price of the competing product sold
by its rival. What we want are estimates of the values of A, B1, B2, B3, and B4.
Regression analysis enables us to obtain them from historical data concerning
Y, X, P, I, and Pr.
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5Ibid., p. 335. The validity of these results is discussed there also.
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In the rest of this chapter, we describe the nature and application of regres-
sion analysis, a statistical technique that can be used to estimate many types of
economic relationships, not just demand functions. We begin with the simple case
in which the only factor influencing the quantity demanded is the firm’s selling
expense, then turn to the more complicated (and realistic) case in which the quan-
tity demanded is affected by more than one factor, as it is in equation (5.1).

Regression analysis describes the way in which one variable is related to
another. (As we see later in this chapter, regression techniques can handle more
than two variables, but only two are considered at present.) Regression analy-
sis derives an equation that can be used to estimate the unknown value of one
variable on the basis of the known value of the other variable. For example,
suppose that the Miller Pharmaceutical Company is scheduled to spend 
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C O N S U L T A N T ’ S  C O R N E R

Marketing Plans at the Stafford Company

The Stafford Company developed a new type of
electric drive. When the design engineering for this
machine was finished, Stafford’s managers began
to make long-range plans concerning marketing
this product. By means of field surveys and the
analysis of published information, the firm’s mar-
ket research personnel estimated that about
10,000 electric drives of this general sort would be
sold per year. The share of the total market that
Stafford’s new product would capture depended
on its price. According to the firm’s market
research department, the relationship between
price and market share was as follows:

Price Market share

$ 800 11.0
900 10.2

1,000 9.2
1,100 8.4
1,200 7.5
1,300 6.6
1,400 5.6

Stafford’s managers wanted advice in setting
the price for their new drive, and to help deter-
mine the optimal price, they wanted a simple equa-
tion expressing the annual quantity demanded of
the new product as a function of its price. They
also wanted whatever information could readily be
provided concerning the reliability of this equation.
In particular, they were interested in whether they
could safely use this equation to estimate the
quantity demanded if price were set at $1,500 or
$1,600.

Prepare a brief report supplying the informa-
tion requested. (Note that the figures on market
share in the table are expressed in percentage
points. Thus, if the price of Stafford’s new product
is set at $800, it will capture 11.0 percent of the
market for electric drives of this general sort,
according to the market research department.)

Source: This section is based on an actual case, although the
numbers and situation are disguised somewhat.
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$4 million next year on selling expense (for promotion, advertising, and related
marketing activities) and it wants to estimate its next-year’s sales, on the basis
of the data in Table 5.1 regarding its sales and selling expense in the previous
nine years. In this case, although the firm’s selling expense next year is known,
its next year’s sales are unknown. Regression analysis describes the way in
which the firm’s sales are historically related to its selling expense.

Simple Regression Model
As you recall from Chapter 1, a model is a simplified or idealized representa-
tion of the real world. In this section, we describe the model—that is, the set of
simplifying assumptions—on which regression analysis is based. We begin by
visualizing a population of all relevant pairs of observations of the indepen-
dent and dependent variables. For instance, in the case of the Miller Pharma-
ceutical Company, we visualize a population of pairs of observations concerning
sales and selling expense. This population includes all the levels of sales cor-
responding to all the levels of selling expense in the history of the firm.

The mean of a variable equals the sum of its values divided by their num-
ber. Therefore, the mean of a variable that assumes four values, 3, 2, 1, and 0,
is (3 � 2 � 1 � 0)/4, or 1.5. Regression analysis assumes that the mean value
of Y, given the value of X, is a linear function of X. In other words, the mean
value of the dependent variable is assumed to be a linear function of the inde-
pendent variable, the equation of this being A � BX, as shown in Figure 5.4.
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Selling Expense and Sales, Miller Pharmaceutical 
Company, Sample of Nine Years

Selling expense Sales
(millions of dollars) (millions of units)

1 4
2 6
4 8
8 14
6 12
5 10
8 16
9 16
7 12

T A B L E

5.1
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This straight line is called the population regression line or the true regres-
sion line.

Put differently, regression analysis assumes that

Yi � A � BXi � ei (5.2)

where Yi is the ith observed value of the dependent variable and Xi is the ith
observed value of the independent variable. Essentially, ei is an error term, that
is, a random amount that is added to A � BXi (or subtracted from it if ei is
negative). Because of the presence of this error term, the observed values of Yi

fall around the population regression line, not on it. Hence, as shown in Fig-
ure 5.4, if e1 (the value of the error term for the first observation) is �1, Y1

lies 1 below the population regression line. And if e2 (the value of the error
term for the second observation) is �1.50, Y2 lies 1.50 above the population
regression line. Regression analysis assumes that the values of ei are indepen-
dent and their mean value equals zero.6
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Regression Model

The mean value of Y, given the value of X, falls on the population regression line.

F I G U R E
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6The values of e1 and e2 are independent if the probability distribution of e1 does not depend on
the value of e2 and the probability distribution of e2 does not depend on the value of e1. Regres-
sion analysis also assumes that the variability of the values of ei is the same, regardless of the value
of X. Many of the tests described subsequently assume too that the values of ei are normally dis-
tributed. For a description of the normal distribution, see Appendix B.
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Although the assumptions underlying regression analysis are unlikely to be
met completely, they are close enough to the truth in a sufficiently large num-
ber of cases that regression analysis is a powerful technique. Nonetheless, it is
important to recognize at the start that, if these assumptions are not at least
approximately valid, the results of a regression analysis can be misleading.

Sample Regression Line
The purpose of a regression analysis is to obtain the mathematical equation for
a line that describes the average relationship between the dependent and inde-
pendent variables. This line is calculated from the sample observations and is
called the sample or estimated regression line. It should not be confused with
the population regression line discussed in the previous section. Whereas the
population regression line is based on the entire population, the sample regres-
sion line is based on only the sample.

The general expression for the sample regression line is

Ŷ � a � bX

where Ŷ is the value of the dependent variable predicted by the regression line,
and a and b are estimators of A and B, respectively. (An estimator is a func-
tion of the sample observations used to estimate an unknown parameter. For
example, the sample mean is an estimator often used to estimate the popula-
tion mean.) Since this equation implies that Ŷ � a when X � 0, it follows that
a is the value of Ŷ at which the line intersects the Y axis. Therefore, a is often
called the Y intercept of the regression line. And b, which clearly is the slope
of the line, measures the change in the predicted value of Y associated with a
one-unit increase in X.

Figure 5.5 shows the estimated regression line for the data concerning sales
and selling expense of the Miller Pharmaceutical Company. The equation for
this regression line is

Ŷ � 2.536 � 1.504X

where Ŷ is sales in millions of units and X is selling expense in millions of dol-
lars. What is 2.536? It is the value of a, the estimator of A. What is 1.504? It
is the value of b, the estimator of B. For the moment, we are not interested in
how this equation was determined; what we want to consider is how it should
be interpreted.

At the outset, note the difference between Y and Ŷ. Whereas Y denotes an
observed value of sales, Ŷ denotes the computed or estimated value of sales,
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based on the regression line. For example, the first row of Table 5.1 shows that,
in the first year, the actual value of sales was 4 million units when selling
expense was $1 million. Therefore, Y � 4.0 millions of units when X � 1. In
contrast, the regression line indicates that Ŷ � 2.536 � 1.504(1), or 4.039 mil-
lions of units when X � 1. In other words, while the regression line predicts
that sales will equal 4.039 millions of units when selling expense is $1 million,
the actual sales figure under these circumstances (in the first year) was 4 mil-
lion units.

It is essential to be able to identify and interpret the Y intercept and slope
of a regression line. What is the Y intercept of the regression line in the case
of the Miller Pharmaceutical Company? It is 2.536 millions of units. This means
that, if the firm’s selling expense is zero, the estimated sales would be 2.536
millions of units. (As shown in Figure 5.5, 2.536 millions of units is the value
of the dependent variable at which the regression line intersects the vertical
axis.) What is the slope of the regression line in this case? It is 1.504. This
means that the estimated sales go up by 1.504 millions of units when selling
expense increases by $1 million.
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Sample Regression Line

This line is an estimate of the population regression line.
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Method of Least Squares
The method used to determine the values of a and b is the so-called method of
least squares. Since the deviation of the ith observed value of Y from the regres-
sion line equals Ŷi � Yî, the sum of these squared deviations equals

�
n

i�1
(Yi � Ŷi)2 � �

n

i�1
(Yi � a � bXi)2 (5.3)

where n is the sample size.7 Using the minimization technique presented in
Chapter 2, we can find the values of a and b that minimize the expression in
equation (5.3) by differentiating this expression with respect to a and b and set-
ting these partial derivatives equal to zero:

� �2 �
n

i�1
(Yi � a � bXi) � 0 (5.4)

� �2 �
n

i�1
Xi (Yi � a � bXi) � 0 (5.5)

Solving equations (5.4) and (5.5) simultaneously and letting X� equal the mean
value of X in the sample and Y� equal the mean value of Y, we find that

b � (5.6)

a � Y� � bX� (5.7)

The value of b in equation (5.6) is often called the estimated regression coef-
ficient.

�
n

i�1
(Xi � X�(Yi � Y�)

���

�
n

i�1
(Xi � X�)2

��
n

i�1
(Yi � Ŷi)2��
�b

��
n

i�1
(Yi � Ŷi)2

��
�a
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7As pointed out in Chapter 1, � is the mathematical summation sign. What does �Xi mean? It
means that the numbers to the right of the summation sign (that is, the values of Xi) should be
summed from the lower limit on i (which is given below the � sign) to the upper limit on i (which
is given above the � sign):

�
n

i�1
Xi

means the same thing as X1 � X2 � . . . � Xn.
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From a computational point of view, it frequently is easier to use a some-
what different formula for b than the one given in equation (5.6). This alter-
native formula, which yields the same answer as equation (5.6), is

b �

In the case of the Miller Pharmaceutical Company, Table 5.2 shows the calcu-
lation of �XiYi, �X2

i, �Xi, and �Yi. Based on these calculations,

b � � 1.504

Therefore, the value of b, the least-squares estimator of B, is 1.504, which is
the result given in the previous section. In other words, an increase in selling
expense of $1 million results in an increase in estimated sales of about 1.504
millions of units.

Having calculated b, we can readily determine the value of a, the least-
squares estimator of A. According to equation (5.7),

a � Y� � bX�

9(638) � (50)(98)
��

9(340) � 502

n �
n

i�1
XiYi � ��

n

i�1
Xi���

n

i�1
Yi�

���

n �
n

i�1
X 2

i � ��
n

i�1
Xi�

2
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Computation of �Xi , �Yi , �X 2
i , �Y 2

i , and �XiYi

Xi Yi X 2
i Y 2

i X iYi

1 4 1 16 4
2 6 4 36 12
4 8 16 64 32
8 14 64 196 112
6 12 36 144 72
5 10 25 100 50
8 16 64 256 128
9 16 81 256 144
7 12 49 144 84

Total 50 98 340 1,212 638
X� � 50/9 � 5.556
Y � 98/9 � 10.889

T A B L E

5.2
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where Y� is the mean of the values of Y, and X� is the mean of the values of X.
Since, as shown in Table 5.2, Y� � 10.889 and X� � 5.556, it follows that

a � 10.889 � 1.504(5.556)
� 2.536

Therefore, the least-squares estimate of A is 2.536 millions of units, which is
the result given in the previous section.

Having obtained a and b, it is a simple matter to specify the average rela-
tionship in the sample between sales and selling expense for the Miller Phar-
maceutical Company. This relationship is

Ŷ � 2.536 � 1.504X (5.8)

where Ŷ is measured in millions of units and X is measured in millions of dol-
lars. As we know, this line is often called the sample regression line, or the
regression of Y on X. It is the line presented in the previous section and plot-
ted in Figure 5.5. Now, we see how this line is derived. (However, a computer
usually does the calculations.)

To illustrate how a regression line of this sort can be used, suppose that the
managers of the firm want to predict the firm’s sales if they decide to devote
$4 million to selling expense. Using equation (5.8), they would predict that its
sales would be

2.536 � 1.504(4) � 8.55. (5.9)

Since sales are measured in millions of units, this means that sales would be
expected to be 8.55 million units.

Coefficient of Determination
Once the regression line has been calculated, we want to know how well this
line fits the data. There can be huge differences in how well a regression line
fits a set of data, as shown in Figure 5.6. Clearly, the regression line in panel
F of Figure 5.6 provides a much better fit than the regression line in panel B
of the same figure. How can we measure how well a regression line fits the
data?

The most commonly used measure of the goodness of fit of a regression line
is the coefficient of determination. For present purposes, it is not necessary to
know the formula for the coefficient of determination, because it is seldom cal-
culated by hand. It is a particular item, often designated by R2, or R-sq on a
computer printout, as we shall see in the section after next.
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Six Regression Lines: Coefficient of Determination
Equals 0, 0.2, 0.4, 0.6, 0.8, and 1.0

When there is only one independent variable, the coefficient of determination is often
designated by r2, rather than R2, but computer printouts generally use R2, regardless of
the number of independent variables. We use R2 here, even though there is only one
independent variable. See footnote 8.
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How the Japanese Motorcycle Makers 
Used the Coefficient of Determination

In late 1982, Harley-Davidson asked the Interna-
tional Trade Commission (ITC), a federal agency
that investigates possible injuries to U.S. firms and
workers from imports, for relief from Japanese
imports of heavyweight motorcycles. According to
Harley-Davidson, the Japanese were selling their
motorcycles at prices too low for it to meet. On
the basis of Section 201 of the 1974 Trade Act, the
ITC can impose tariffs or quotas on imported goods
to provide “additional time to permit a seriously
injured domestic industry to become competi-
tive.” But to receive such tariff or quota relief, the
industry must demonstrate that the injuries it suf-
fers are due to increased imports, not some other
cause such as bad management or a recession.

Harley-Davidson’s petition to the ITC was con-
tested by the major Japanese motorcycle makers:
Honda, Kawasaki, Suzuki, and Yamaha. One of their
arguments was that general economic conditions,
not Japanese imports, were the principal cause of
Harley-Davidson’s declining share of the market.
In other words, they attributed Harley-Davidson’s
problems to the recession of the early 1980s. They
pointed out that heavyweight motorcycles, which
cost about $7,000, were a “big-ticket luxury con-
sumer product” and that their sales would be
expected to fall in a recession.

To back up this argument, John Reilly of ICF, Inc.,
the Japanese firms’ chief economic consultant, cal-
culated a regression, where Harley-Davidson’s
sales were the dependent variable and the level of
blue-collar employment (a measure of general
economic conditions) was the independent vari-
able. He showed that the coefficient of determi-
nation was about 0.73. Then, he calculated a
regression where Harley-Davidson’s sales were the
dependent variable, and the level of sales of Japan-
ese motorcycles was the independent variable. He

showed that the coefficient of determination was
only about 0.22. From this comparison of the two
coefficients of determination, he concluded that
Harley-Davidson’s sales were much more closely
related to general economic conditions than to the
level of sales of Japanese motorcycles.

Of course, this analysis tells us nothing about
the effects of the price of Japanese motorcycles
on Harley-Davidson’s sales and profits. From many
points of view, what was needed was an estimate
of the market demand function for Harley-
Davidson’s motorcycles. Such an analysis would
have related Harley-Davidson’s sales to the price
of Harley-Davidson’s motorcycles, the price of
Japanese motorcycles, the level of disposable
income, and other variables discussed in Chapter
3. In any event, despite the evidence cited, the
Japanese motorcycle manufacturers did not pre-
vail. On the contrary, the ITC supported Harley-
Davidson’s petition, and on April 1, 1983, President
Ronald Reagan imposed a substantial tariff (almost
50 percent) on imported (large) motorcycles.*

*See “Revving up for Relief: Harley-Davidson at the ITC,” a case
in the Study Guide accompanying this textbook. For further dis-
cussion, see J. Gomez-Ibanez and J. Kalt, Cases in Microeco-
nomics (Englewood Cliffs, NJ: Prentice-Hall, 1990); P.C. Reid,
Well Made in America; Lessons from Harley-Davidson on Being
the Best (New York: McGraw-Hill, 1989); and New York Times,
July 20, 1997.
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The value of the coefficient of determination varies between 0 and 1. The
closer it is to 1, the better the fit; the closer it is to 0, the poorer the fit. In the
case of the Miller Pharmaceutical Company, the coefficient of determination
between sales and selling expense is 0.97, which indicates a very good fit. To
get a feel for what a particular value of the coefficient of determination means,
look at the six panels of Figure 5.6. Panel A shows that, if the coefficient of
determination is 0, there is no relationship at all between the independent 
and dependent variables. Panel B shows that, if the coefficient of determina-
tion is 0.2, the regression line fits the data rather poorly. Panel C shows that, if
it is 0.4, the regression line fits better but not very well. Panel D shows that, if it
is 0.6, the fit is reasonably good. Panel E shows that, if it is 0.8, the fit is good.
Finally, panel F shows that, if it is 1.0, the fit is perfect.8 (A fuller discussion
of the coefficient of determination is provided in the appendix to this chapter.

Multiple Regression
In previous sections of this chapter, we discussed regression techniques in the
case in which there is only one independent variable. In practical applications
of regression techniques, it frequently is necessary and desirable to include two
or more independent variables. Now, we extend the treatment of regression to
the case in which there is more than one independent variable.

Whereas a simple regression includes only one independent variable, a mul-
tiple regression includes two or more independent variables. Multiple regres-
sions ordinarily are carried out on computers with the aid of statistical software
packages like Minitab, SAS, or SPSS. So, there is no reason for you to learn
how to do them by hand. The first step in multiple regression analysis is to
identify the independent variables and specify the mathematical form of the
equation relating the mean value of the dependent variable to these indepen-
dent variables.

8If one is doing the calculations by hand, a convenient formula for the coefficient of determina-
tion is
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n
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Table 5.2 contains the quantities to be inserted in this formula.
Note too that the square root of r2, called the correlation coefficient, is also used to measure

how well a simple regression equation fits the data. (The sign of the square root is the same as that
of b.)

As pointed out in the note to Figure 5.6, computer printouts generally refer to the coefficient
of determination as R2, although statisticians often call it r2 when there is only one independent
variable.
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In the case of the Miller Pharmaceutical Company, suppose that the firm’s
executives feel that its sales depend on its price, as well on its selling expense.
More specifically, they assume that

Yi � A � B1Xi � B2Pi � ei (5.10)

where Xi is the selling expense (in millions of dollars) of the firm during the
ith year and Pi is the price (in dollars) of the firm’s product during the ith year
(measured as a deviation from $10, the current price). Of course, B2 is assumed
to be negative. This is a different model from that in equation (5.2). Here, we
assume that Yi (the firm’s sales in the ith year) depends on two independent
variables, not one. Of course, there is no reason why more independent vari-
ables cannot be added, so long as data are available concerning their values
and there is good reason to expect them to affect Yi. But, to keep matters sim-
ple, we assume that the firm’s executives believe that only selling expense and
price should be included as independent variables.9

The object of multiple regression analysis is to estimate the unknown con-
stants A, B1, and B2 in equation (5.10). Just as in the case of simple regression,
these constants are estimated by finding the value of each that minimizes the
sum of the squared deviations of the observed values of the dependent variable
from the values of the dependent variable predicted by the regression equation.
Suppose that a is an estimator of A, b1 is an estimator of B1, and b2 is an esti-
mator of B2. Then, the value of the dependent variable Yi predicted by the esti-
mated regression equation is

Ŷi � a � b1Xi � b2Pi

and the deviation of this predicted value from the actual value of the depen-
dent variable is

Yi � Ŷi � Yi � a � b1Xi � b2Pi

If these deviations are squared and summed, the result is

�
n

i�1
(Yi � Ŷi)2 � �

n

i�1
(Yi � a � b1Xi � b2Pi)2 (5.11)

where n is the number of observations in the sample. As pointed out earlier,
we choose the values of a, b1, and b2 that minimize the expression in equation
(5.11). These estimates are called least-squares estimates, as in the case of 
simple regression.

Multiple Regression | 171

9As in the case of simple regression, it is assumed that the mean value of ei is zero and that the
values of ei are statistically independent (recall footnote 6).
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Computer programs, described in the following section, are available to cal-
culate these least-squares estimates. Based on the data in Table 5.3, the com-
puter output shows that b1 � 1.758, b2 � �0.352, and a � 2.529. Consequently,
the estimated regression equation is

Yi � 2.529 � 1.758Xi � 0.352Pi (5.12)

The estimated value of B1 is 1.758, as contrasted with our earlier estimate of
B, which was 1.504. In other words, a $1 million increase in selling expense
results in an increase in estimated sales of 1.758 million units, as contrasted
with 1.504 million units in the simple regression in equation (5.8). The reason
these estimates differ is that the present estimate of the effect of selling expense
on sales holds constant the price, whereas the earlier estimate did not hold this
factor constant. Since this factor affects sales, the earlier estimate is likely to
be a biased estimate of the effect of selling expense on sales.10

172 | Chapter 5 Estimating Demand Functions

Sales, Selling Expense, and Price, Miller Pharmaceutical
Company, Sample of Nine Years

Selling expense Sales Price
(millions of dollars) (millions of units) (less $10)

2 6 0
1 4 1
8 16 2
5 10 3
6 12 4
4 8 5
7 12 6
9 16 7
8 14 8

T A B L E

5.3

10Of course, this regression is supposed to be appropriate only when Xi and Pi vary in a certain
limited range. If Pi is large and Xi is small, the regression would predict a negative value of sales,
which obviously is inadmissible. But, as long as the regression is not used to make predictions for
values of Xi and Pi outside the range of the data given in Table 5.3, this is no problem. For sim-
plicity, we assume in equation (5.10) that the effect of price on the mean value of sales (holding
selling expense constant) can be regarded as linear in the relevant range. Alternatively, we could
have assumed that it was quadratic or the constant-elasticity demand function discussed in Chap-
ter 3 might have been used.
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Color Balance and Shelf-Life 
Performance of Polaroid Film

In 1947, the prototype of the instant camera was
demonstrated to the Optical Society of America. A
year later, the Polaroid made the first instant cam-
era and film available to the public. The single-step
photographic process enabled pictures to be devel-
oped in 60 seconds. Unfortunately, Polaroid did not
see the potential for the digital camera fast
enough, and although they subsequently devel-
oped digital cameras, they were no longer the
leader in the photography market. In addition,
“one-hour” photo developing at the local drug-
store, supermarket, or photo shop took away some
of the advantage of Polaroid’s “instant” pictures.
In 2001, they voluntarily declared bankruptcy.

Sixty five percent of the assets (and trademark
name) of the company were purchased by One Equity
Partners (part of J.P. Morgan Chase) in 2002. Primary
PDC (the interests of the old Polaroid Corporation

own the other 35% of the new Polaroid Corpora-
tion. According to the new corporate description by
Yahoo Finance, “the company makes instant film and
camera, digital cameras, professional imaging equip-
ment, and security ID-card systems.” Its I-Zone
instant camera is the nation’s top-selling camera. So,
while digital cameras are prevalent, many people take
pictures using film cameras.

Regression analysis is important in many
aspects of managerial economics, not just in esti-
mating demand functions. For example, this tech-
nique helped the Polaroid Corporation, a leading
manufacturer of cameras and film, to supply film
at the peak of its usefulness. An extremely impor-
tant consideration to Polaroid was how well films
maintain their sensitivity, and whether they pro-
vided satisfactory photographic results and for
how long. Information of this sort, together with
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A N A L Y Z I N G  M A N A G E R I A L  D E C I S I O N S

How Good are Ward’s
Projections of Auto Output?

�

The automobile industry and its suppliers, as well
as other industries and government agencies, try
in a variety of ways to forecast auto output in the
United States. Each month, Ward’s Automotive
Reports asks eight U.S. automakers to state their
domestic production plans for the next three to
eight months. The following figure shows actual
domestic auto production and Ward’s projections
made at the beginning of each quarter. The aver-
age error is about a half-million cars per year, or
about 6 percent.

To obtain a more precise estimate of the rela-
tionship between Ward’s projections and actual
output, Ethan Harris regressed actual output (Y) on
Ward’s projection (X) and the error in Ward’s pro-

jection during the previous quarter (E), the result
being

Y � 0.275 � 0.909X � 0.277E

The multiple coefficient of determination equals
0.838.

(a) If Ward’s projection is 1 million cars higher
in one quarter than in another, would you expect
actual output to be 1 million cars higher? Why or
why not? (b) If Ward’s projection was 100,000 cars
too high in the previous quarter, is it likely that
actual output would be higher than if the projec-
tion had been 100,000 cars too low in the previous

data concerning average elapsed time between the
purchase and utilization of film, enabled Polaroid
to make manufacturing adjustments to help con-
sumers get good performance from Polaroid film.

One important characteristic of film is color bal-
ance—its ability to produce color. To see the effects
of film age on color balance, Polaroid took 14 sam-
ples at monthly intervals, up to 13 months after
manufacture. For each sample, the change in blue
balance was measured. As shown in the graph, the
color balance becomes bluer (that is, “cooler,” not
as “warm”) as the film ages.

Using the techniques described in this chapter,
Polaroid estimated the regression line:

Ŷ � 8.194 � 6.756X,

where Y is the change in blue balance and X is the age
(in months) of the film. The coefficient of determina-
tion was 0.966, which indicates a close fit to the data.

According to Polaroid officials, this application 
of regression analysis was important. Together with
data regarding consumer purchase and use patterns,
it enabled “Polaroid to manufacture film that shifted
those characteristics which determine picture qual-
ity to their optimum setting by the time the film was
being used. In essence, Polaroid had the information
to compensate in its manufacturing process for cru-
cial alterations in film performance that happened
as a result of the aging process.”*

*D. Anderson, D. Sweeney, and T. Williams, Statistics for Busi-
ness and Economics (3d ed.; St. Paul, MN: West, 1987), p. 523.

4911_e05_p152-199  11/8/04  10:47 AM  Page 174



Software Packages and Computer Printouts | 175

1973 74 75 76 77 78 79 80 81 82 83 84 85

Millions
of units
(seasonally
adjusted)

11

10

9

8

7

6

5

4

Ward’s
projection

Actual
production

quarter? (c) Does the regression provide a good or
poor fit to the data?

SOLUTION (a) No. According to the equation, if
X increases by 1 million, Y would be expected to
increase by 0.909 times 1 million, or 909,000 (if
E remains the same). (b) Under these circum-
stances, it is likely that actual output would be
higher than it would if the projection had been
100,000 cars too low in the previous quarter. To
see this, note that the regression coefficient of

E in the regression equation is positive. There-
fore, increases in E tend to be associated with
increases in Y. (c) The fact that the multiple coef-
ficient of determination is about 0.8 indicates
that the fit is good (about like that in panel E of
Figure 5.6).*

*For further discussion, see E. Harris, “Forecasting Automobile
Output,” Federal Reserve Bank of New York Quarterly Review,
Winter 1985–86, reprinted in Managerial Economics and Oper-
ations Research, ed. Mansfield.

Software Packages and Computer Printouts
With few exceptions, regression analyses are carried out on computers, not by
hand. Therefore, it is important that you know how to interpret computer print-
outs showing the results of regression calculations. Because there is a wide vari-
ety of “canned” programs for calculating regressions, no single format or list
of items is printed out. However, the various kinds of printouts are sufficiently
similar that it is worthwhile looking at two illustrations—Minitab and SAS—in
some detail.
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Figure 5.7 shows the Minitab printout from the multiple regression of the
Miller Pharmaceutical Company’s sales (designated as C1) on its selling expense
(C2) and price (C3). According to this printout, the regression equation is

C1 � 2.529 � 1.758C2 � 0.352C3

The column headed “Coef ” shows the estimated regression coefficient of each
independent variable (called a “Predictor” on the printout). The intercept of
the regression is the top figure in this vertical column (the figure in the hor-
izontal row where the “Predictor” is “Constant”). The coefficient of determi-
nation (called R-sq) is shown in the middle of the printout. For a multiple
regression, the coefficient of determination is often called the multiple 
coefficient of determination.11

Figure 5.8 shows the SAS printout for the same regression. To find the inter-
cept of the equation, obtain the figure (2.529431) in the horizontal row labeled
“INTERCEP” that is in the vertical column called “Parameter Estimate.” To find
the regression coefficient of selling expense, obtain the figure (1.758049) in the
horizontal row labeled “C2” that is in the vertical column called “Parameter
Estimate.” To find the regression coefficient of price, obtain the figure
(�0.351870) in the horizontal row labeled “C3” that is in the vertical column
called “Parameter Estimate.” The multiple coefficient of determination is the fig-
ure (0.9943) to the right of “R-square.”

Interpreting the Computer Printout
The following additional statistics are also of considerable importance: the stan-
dard error of estimate, the F statistic, and the t statistic. Each is discussed briefly
next. For more detailed discussions of each, see any business statistics text-
book.12

The Standard Error of Estimate
A measure often used to indicate the accuracy of a regression model is the stan-
dard error of estimate, which is a measure of the amount of scatter of individ-

11The positive square root of the multiple coefficient of determination is called the multiple corre-
lation coefficient, denoted R. It too is sometimes used to measure how well a multiple regression
equation fits the data.

The unadjusted multiple coefficient of determination—R-sq in Figure 5.7—can never decrease as
another independent variable is added; a related measure without this property is the adjusted mul-
tiple coefficient of determination—R-sq (adj.) in Figure 5.7. The latter is often denoted R̄2.
12For example, E. Mansfield, Statistics for Business and Economics (5th ed.; New York: Norton,
1994).
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Minitab Printout of Results of Multiple Regression
F I G U R E

5.7

SAS Printout of Results of Multiple Regression
F I G U R E

5.8
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ual observations about the regression line. The standard error of estimate is
denoted by “s” in the Minitab printout in Figure 5.7 and by “ROOT MSE” in
the SAS printout in Figure 5.8. A comparison of these printouts shows that, in
the Miller Pharmaceutical multiple regression, the standard error is about 0.37
million units of sales. Of course, the answer is always the same, no matter which
package we use.

To illustrate what the standard error of estimate measures, consider Figure
5.9. In panel A, the standard error of estimate is 1.5, which is much higher than
in panel D, where it is 0.25. This is reflected in the much greater scatter in the
points around the regression line in panel A than in panel D. As pointed out
already, what the standard error of estimate measures is the amount of such

Four Regression Lines: Standard Error of Estimate
Equals 1.5, 1.0, 0.5, and 0.25
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scatter. Clearly, the amount of scatter decreases as we move from panel A to
panel B to panel C to panel D. Similarly, the standard error of estimate decreases
as we move from panel A to panel B to panel C to panel D.

The standard error of estimate is useful in constructing prediction intervals,
that is, intervals within which there is a specified probability that the dependent
variable will lie. If this probability is set at 0.95, a very approximate prediction
interval is

Ŷ � 2se (5.13)

where Ŷ is the predicted value of the dependent variable based on the sample
regression and se is the standard error of estimate. For example, if the predicted
value of the Miller Pharmaceutical Company’s sales is 11 million units, the prob-
ability is about 0.95 that the firm’s sales will be between 10.26 (�11 � 2 	

0.37) million units and 11.74 (�11 � 2 	 0.37) million units. However, it is
important to note that equation (5.13) is a good approximation only if the 
independent variable is close to its mean; if this is not true, more complicated
formulas must be used instead.13

The F Statistic
Frequently, the analyst wants to know whether any of the independent vari-
ables really influences the dependent variable. In the case of the Miller Phar-
maceutical Company, the marketing director may ask whether the data indicate
that either selling expense or price really influences the firm’s sales. To answer
such a question, one utilizes the F statistic, which is also included in the com-
puter printout. The value of F is provided in the fifth horizontal row from the
bottom of figures in the Minitab printout (Figure 5.7) and in the top horizon-

13The formula for the standard error of estimate is

��
n

i�1
(Yi � Ŷi )2/(n � k � 1)�

0.5

where k is the number of independent variables.
If the error term is normally distributed (see Appendix B for a description of the normal distri-

bution), the exact prediction interval (with 0.95 probability) is

Ŷ � t 0.025se ��
n �

n
1

� � �
0.5

where t0.025 is the value of a variable with the t distribution with (n � 2) degrees of freedom that
is exceeded with probability of 0.025, X * is the value of the independent variable, and n is the
sample size. (The t distribution is taken up in Appendix B.) This assumes that there is only one
independent variable. For further discussion, see Mansfield, Statistics for Business and Economics.
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tal row of figures in the SAS printout (Figure 5.8). Both printouts indicate that
the value of F in the Miller Pharmaceutical case equals about 525.72.

Large values of F tend to imply that at least one of the independent vari-
ables has an effect on the dependent variable. Tables of the F distribution, a
probability distribution named (or initialed) after the famous British statistician
R. A. Fisher, are used to determine the probability that an observed value of the
F statistic could have arisen by chance, given that none of the independent vari-
ables has any effect on the dependent variable (see Appendix B). This probabil-
ity too is shown in the computer printout. It is denoted by “p” (immediately to
the right of F ) in the Minitab printout, and by “Prob.F” (immediately to the
right of F VALUE) in the SAS printout. The value of this probability is 0.0001
(SAS) or 0.000 (Minitab); the difference is due to rounding.

Having this probability in hand, it is easy to answer the marketing director’s
question. Clearly, the probability is extremely small—only about 1 in 10,000—
that one could have obtained such a strong relationship between the dependent
and independent variables sheerly by chance. Therefore, the evidence certainly
suggests that selling expense or price (or both) really influences the firm’s sales.

The t Statistic
Managers and analysts often are interested in whether a particular independent
variable influences the dependent variable. For example, the president of the
Miller Pharmaceutical Company may want to determine whether the amount
allocated to selling expense really affects the firm’s sales. As we know from
equation (5.12), the least-squares estimate of B1 is 1.758, which suggests that
selling expense has an effect on sales. But this least-squares estimate varies
from one sample to another, and by chance it may be positive even if the true
value of B1 is zero.

To test whether the true value of B1 is zero, we must look at the t statistic
of B1, which is presented in the printout. For Minitab, recall that B1 is the regres-
sion coefficient of C2, since selling expense is denoted by C2. Therefore, to find
the t statistic for B1, we must locate the horizontal row of figures in the print-
out where the “Predictor” is C2 and obtain the figure in the vertical column
called “t-ratio.” If SAS is used, find the horizontal row of figures where the
“Variable” is C2 and obtain the figure in the vertical column called “T for H0:
Parameter � 0.” If the error terms in the regression (that is, ei) are normally dis-
tributed, the t statistic has a well-known probability distribution—the t distrib-
ution (see Appendix B).

All other things equal, the bigger is the value of the t statistic (in absolute
terms), the smaller the probability that the true value of the regression coeffi-
cient in question really is zero. Based on the t distribution, it is possible to cal-
culate the probability, if the true value of the regression coefficient is zero, that
the t statistic is as large (in absolute terms) as we observe. This probability too
is presented in the computer printout. For both Minitab and SAS, this proba-
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bility is immediately to the right of the t statistic. For Minitab, it is in the ver-
tical column labeled “p”; for SAS, it is in the vertical column labeled “Prob 


T.” Regardless of whether Minitab or SAS is used, this probability is shown to
be about 0.0001 (see Figures 5.7 and 5.8).

Given this probability, we can readily answer the question put forth by the
president of the Miller Pharmaceutical Company. Recall that the president
wanted to know whether the amount allocated to selling expense really affects
the firm’s sales. Given the results obtained in the previous paragraph, it seems
extremely likely that the amount allocated to selling expense really does affect
sales. After all, according to the previous paragraph, the probability is only
about 1 in 10,000 that chance alone would have resulted in as large a t statis-
tic (in absolute terms) as we found, based on the firm’s previous experience.14

Multicollinearity
One important problem that can arise in multiple regression studies is multi-
collinearity, a situation in which two or more independent variables are very
highly correlated. In the case of the Miller Pharmaceutical Company, suppose
that there had been a perfect linear relationship in the past between the firm’s
selling expense and its price. In a case of this sort, it is impossible to estimate
the regression coefficients of both independent variables (X and P) because the
data provide no information concerning the effect of one independent variable,
holding the other independent variable constant. All that can be observed is the

14Note that this is a two-tailed test of the hypothesis that selling expense has no effect on sales.
That is, it is a test of this hypothesis against the alternative hypothesis that the true regression
coefficient of selling expense is either positive or negative. In many cases, a one-tailed test—for
example, in which the alternative hypothesis states that the true regression coefficient is positive
only—may be more appropriate.

Frequently, a manager would like to obtain an interval estimate for the true value of a regres-
sion coefficient. In other words, he or she wants an interval that has a particular probability of
including the true value of this regression coefficient. To find an interval that has a probability
equal to (1 � �) of including this true value, you can calculate

b1 � t�/2sb1 (5.14)

where sb1 is the standard error of b1 (in the horizontal row labeled “C2” and the vertical column
labeled “Stdev” in the Minitab printout, or in the horizontal row labeled “C2” and the vertical col-
umn labeled “Standard Error” in the SAS printout) and where t�/2 is the �/2 point on the t distri-
bution with (n � k � 1) degrees of freedom (see Appendix B). If � is set equal to 0.05, you obtain
an interval that has a 95 percent probability of including B1. In the case of the Miller Pharma-
ceutical Company, since, B1 � 1.758, sb1 � 0.069, and t0.025 � 2.447 it follows that a 95 percent
confidence interval for B1 is

1.758 � 2.447 (0.069)

or 1.589 to 1.927. For further discussion, see any business statistics textbook.
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effect of both independent variables together, given that they both move together
in the way they have in previous years.

Regression analysis estimates the effect of each independent variable by see-
ing how much effect this one independent variable has on the dependent vari-
able when other independent variables are held constant. If two independent
variables move together in a rigid, lockstep fashion, there is no way to tell how
much effect each has separately; all we can observe is the effect of both com-
bined. If there is good reason to believe that the independent variables will con-
tinue to move in lockstep in the future as they have in the past, multicollinearity
does not prevent us from using regression analysis to predict the dependent
variable. Since the two independent variables are perfectly correlated, one of
them in effect stands for both and we therefore need use only one in the regres-
sion analysis. However, if the independent variables cannot be counted on to
continue to move in lockstep, this procedure is dangerous, since it ignores the
effect of the excluded independent variable.

In reality, you seldom encounter cases in which independent variables are
perfectly correlated, but you often encounter cases in which independent 
variables are so highly correlated that, although it is possible to estimate the
regression coefficient of each variable, these regression coefficients cannot be
estimated at all accurately. To cope with such situations, it sometimes is pos-
sible to alter the independent variables in such a way as to reduce multi-
collinearity. Suppose that a managerial economist wants to estimate a regression
equation where the quantity demanded per year of a certain good is the depen-
dent variable and the average price of this good and disposable income of U.S.
consumers are the independent variables. If disposable income is measured in
money terms (that is, without adjustment for changes in the price level), there
may be a high correlation between the independent variables. But if disposable
income is measured in real terms (that is, with adjustment for changes in the
price level), this correlation may be reduced considerably. Therefore, the man-
agerial economist may decide to measure disposable income in real rather than
money terms to reduce multicollinearity.

If techniques of this sort cannot reduce multicollinearity, there may be no
alternative but to acquire new data that do not contain the high correlation
among the independent variables. Whether you (or your board of directors) like
it or not, there may be no way to estimate accurately the regression coefficient
of a particular independent variable that is very highly correlated with some
other independent variable.

Serial Correlation
In addition to multicollinearity, another important problem that can occur in
regression analysis is that the error terms (the values of ei) are not indepen-
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dent; instead, they are serially correlated. For example, Figure 5.10 shows a
case in which, if the error term in one period is positive, the error term in the
next period is almost always positive. Similarly, if the error term in one period
is negative, the error term in the next period almost always is negative. In such
a situation, we say that the errors are serially correlated (or autocorrelated, which
is another term for the same thing).15 Because this violates the assumptions
underlying regression analysis, it is important that we be able to detect its occur-
rence. (Recall that regression analysis assumes that the values of ei are inde-
pendent.)

To see whether serial correlation is present in the error terms in a regres-
sion, we can use the Durbin-Watson test. Let êi be the difference between Yi

Serial Correlation of Error Terms

If the error term in one year is positive, the error term in the next year is almost always
positive. If the error term in one year is negative, the error term in the next year is almost
always negative.
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15This is a case of positive serial correlation. (It is the sort of situation frequently encountered in
managerial economics.) If the error term in one period tends to be positive (negative) and if the
error term in the previous period is negative (positive), this is a case of negative serial correlation.
More is said about this subsequently.
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and Ŷi , the value of Yi predicted by the sample regression. To apply the Durbin-
Watson test, we (or in most cases, the computer) must calculate

d � (5.15)

Durbin and Watson provided tables that show whether d is so high or so low
that the hypothesis that there is no serial correlation should be rejected. (Note
that d is often called the Durbin-Watson statistic.)

Suppose we want to test this hypothesis against the alternative hypothesis
that there is positive serial correlation. (Positive serial correlation would mean
that ei is directly related to ei�1, as in Figure 5.10.) If so, we should reject the
hypothesis of no serial correlation if d � dL and accept this hypothesis if d 


dU. If dL 
 d 
 dU, the test is inconclusive. The values of dL and dU are shown
in Appendix Table 7. (Note that these values depend on the sample size n and
on k, the number of independent variables in the regression.) On the other
hand, suppose the alternative hypothesis is that there is negative serial corre-
lation. (Negative serial correlation means that ei is inversely related to eI�1.)
If so, we should reject the hypothesis of no serial correlation if d 
 4 � dL

and accept this hypothesis if d � 4 � dU. If 4 � dU 
 d 
 4 � dL, the test is
inconclusive.16

One way to deal with the problem of serial correlation, if it exists, is to take
first differences of all the independent and dependent variables in the regres-
sion. For example, in the case of the Miller Pharmaceutical Company, we might
use the change in sales relative to the previous year (rather than the level of
sales) as the dependent variable. And the change in selling expense relative to
the previous year (rather than the level of selling expense) and the change in
price relative to the previous year (rather than the level of price) might be used
as the independent variables in the regression.17

�
n

i�2
(êi � êi�1)2

��

�
n

i�1
ê i

2

16For a two-tailed test of both positive and negative serial correlation, reject the hypothesis of no
serial correlation if d � dL or if d 
 4 � dL, and accept this hypothesis if dU � d � 4 � dU. Other-
wise, the test is inconclusive. For a two-tailed test, the significance level is double the significance
level shown in Appendix Table 7.
17The use of first differences, while useful in some cases, is not always appropriate. For further dis-
cussion, see Johnston, Econometric Methods.

It is also important to avoid specification errors, which result when one or more significant
explanatory variables is not included in the regression. If specification errors arise, the estimated
regression coefficients may be biased and the regression equation may not predict very well. Also,
problems can arise if the independent variables in a regression contain substantial measurement
errors, since the regression coefficients of these variables often tend to be biased toward zero.
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Further Analysis of the Residuals
In the previous section, we used êi (the difference between the actual value of
Yi and its value predicted by the sample regression) to test for serial correla-
tion. Since it is a measure of the extent to which Yi cannot be explained by the
regression, êi is often called the residual for the ith observation. Now we describe
additional ways in which the residuals—that is, the values of êi—can be used to
test whether the assumptions underlying regression analysis are met. We begin
by plotting the value of each residual against the value of the independent vari-
able. (For simplicity, we suppose only one independent variable.) That is, we
plot êi against Xi, which is the independent variable.

Suppose that the plot is as shown in Figure 5.11. As you can see, the val-
ues of the residuals are much more variable when Xi is large than when it is
small. In other words, the variation in êi increases as Xi increases. Since regres-
sion analysis assumes that the variation in the error terms is the same, regard-
less of the value of the independent variable, the plot in Figure 5.11 indicates
that this assumption is violated. Two ways to remedy this situation are to use a

Residuals Indicating That the Variation in the Error
Terms Is Not Constant

As you can see, the residuals vary less when X is small than when it is large.
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weighted least-squares regression or to change the form of the dependent vari-
able. For example, we might use log Y rather than Y as the dependent variable.18

If the plot of êi against Xi looks like Figure 5.12, this is an indication that
the relationship between the dependent and independent variables is not lin-
ear. When X is very low and very high, the linear regression overestimates the
dependent variable, as shown by the fact that the residuals tend to be negative.
When X is of medium size, the linear regression underestimates the dependent
variable, as shown by the fact that the residuals tend to be positive. It appears
that a quadratic relationship fits the data better than a linear one. So, rather
than assume that equation (5.2) holds, we should assume that

Yi � A � B1Xi � B2X 2
i � ei

Using the multiple regression techniques described previously, the values of A,
B1, and B2 can be estimated.

Residuals Indicating That the Relationship between the
Dependent and Independent Variables Is Nonlinear, 
Not Linear

The residuals are negative when X is very small or very large and positive when X is of
medium size.
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18For further details, see Johnston, Econometric Methods.
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Summary
1. An identification problem may occur if price in various periods is plotted

against quantity demanded and the resulting relationship is used to esti-
mate the demand curve. Because nonprice variables are not held constant,
the demand curve may have shifted over time. Nonetheless, sophisticated
econometric methods may be used to estimate the demand function. Also,
market experiments and consumer interviews may be of value. For exam-
ple, firms sometimes vary price from one city or region to another, to 
see what the effects are on quantity demanded. An actual illustration of
this sort was the evaluation of the four promotion alternatives by L’eggs
Products.

2. Regression analysis is useful in estimating demand functions and other eco-
nomic relationships. The regression line shows the average relationship
between the dependent variable and the independent variable. The method
of least squares is the standard technique used to fit a regression line to a
set of data. If the regression line is Ŷ � a � bX and if a and b are calcu-
lated by least squares,

b �

and

a � Y� � bX�

This value of b is often called the estimated regression coefficient.
3. Whereas a simple regression includes only one independent variable, a mul-

tiple regression includes more than one independent variable. An advan-
tage of multiple regression over a simple regression is that you frequently
can predict the dependent variable more accurately if more than one inde-
pendent variable is used. Also, if the dependent variable is influenced by
more than one independent variable, a simple regression of the dependent
variable on a single independent variable may result in a biased estimate
of the effect of this independent variable on the dependent variable.

4. The first step in multiple regression analysis is to identify the independent
variables and specify the mathematical form of the equation relating the
mean value of the dependent variable to the independent variables. For
example, if Y is the dependent variable and X and P are identified as the
independent variables, one might specify that

Yi � A � B1Xi � B2Pi � ei

�
n

i�1
(Xi � X�)(Yi � Y�)

���

�
n

i�1
(Xi � X�)2
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A N A L Y Z I N G  M A N A G E R I A L  D E C I S I O N S

How Fed Economists Forecast Auto Output

�

Since purchases by the auto industry account for
more than half of the rubber and lead consumed
in this country as well as a major portion of the
steel, aluminum, and a variety of other materials,
it is obvious that many firms and government
agencies, as well as the auto firms themselves, are
interested in forecasting auto output. The Federal
Reserve Bank of New York has published an arti-
cle describing how the regression techniques
described in this chapter have been used for this
purpose. According to the author, Ethan Harris, the
quantity of autos produced quarterly depends on
five variables: (1) real disposable income, (2) the
ratio of retail auto inventories to sales, (3) the aver-
age price of new cars (relative to the overall con-
sumer price index), (4) the price level for nonauto
durable goods, and (5) the prime rate (the interest
rate banks charge their best customers).

The regression results follow. The probability
that the t statistic for each of the regression coef-
ficients is as large (in absolute terms) as it is here,
if the true value of the regression coefficient is
zero, is less than 0.01, except for the case of the
nonauto price.

The value of the adjusted multiple coefficient
of determination is 0.862, the standard error of
estimate is 532, and the Durbin-Watson statistic
(d) is 2.26. According to Ethan Harris, this regres-
sion equation has predicted auto output with a
mean (absolute) error of about 6.9 percent.

(a) Would you expect the regression coefficient
of the inventory-sales ratio to be negative? If so,
why? (b) Can we be reasonably sure that the 
true value of the regression coefficient of the
inventory-sales ratio is not zero? Why or why not?
(c) Is there evidence of positive serial correlation

of the error terms? (d) Can we use this regression
as an estimate of the demand curve for autos? Why
or why not?

SOLUTION (a) Yes. If inventories are large relative
to sales, one would expect auto firms to produce
less than they would if inventories were small. (b)
Yes. According to the preceding discussion, the
probability that the t statistic for the regression
coefficient of the inventory-sales ratio would be
as great as 6.1 (in absolute terms) would be less
than 0.01 if the true regression coefficient were
zero. Hence, if this true regression coefficient were
zero, it is exceedingly unlikely that the t statistic
(in absolute terms) would equal its observed value
or more. (c) No. Since the value of n is approxi-
mately 50 and k � 5, Appendix Table 7 shows that
dL � 1.26 and dU � 1.69 if the significance level
equals 0.025. The observed value of the Durbin-
Watson statistic (2.26) is greater than dU (1.69);
this means that we should accept the hypothesis
that there is no positive serial correlation. (d) No.
One important indication that this is true is that
the regression coefficient of the auto price is pos-
itive. Clearly, this regression equation cannot be
used as an estimate of the demand curve for autos.

Regression 
Variable coefficient t statistic

Constant �22,302 �4.5
Disposable 12.9 6.6

income
Prime rate �97.8 �3.2
Inventory-sales �19.9 �6.1

ratio
Auto price 230 5.0
Nonauto price 6.0 2.1
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where ei is an error term. To estimate B1 and B2 (called the true regression
coefficients of X and P) as well as A (the intercept of this true regression
equation), we use the values that minimize the sum of squared deviations
of Yi from Ŷi, the value of the dependent variable predicted by the esti-
mated regression equation.

5. In a simple regression, the coefficient of determination is used to measure
the closeness of fit of the regression line. In a multiple regression, the mul-
tiple coefficient of determination, R2, plays the same role. The closer R2 is
to 0, the poorer the fit; the closer it is to 1, the better the fit.

6. The F statistic can be used to test whether any of the independent vari-
ables has an effect on the dependent variable. The standard error of esti-
mate can help to indicate how well a regression model can predict the
dependent variable. The t statistic for the regression coefficient of each
independent variable can be used to test whether this independent vari-
able has any effect on the dependent variable. Computer printouts show
the probability that the t statistic is as big (in absolute terms) as we
observed, given that this independent variable has no effect on the depen-
dent variable.

7. A difficult problem that can occur in multiple regression is multicollinear-
ity, a situation in which two or more of the independent variables are highly
correlated. If multicollinearity exists, it may be impossible to estimate accu-
rately the effect of particular independent variables on the dependent vari-
able. Another frequently encountered problem arises when the error terms
in a regression are serially correlated. The Durbin-Watson test can be car-
ried out to determine whether this problem exists. Plots of the residuals can
help to detect cases in which the variation of the error terms is not con-
stant or where the relationship is nonlinear not linear.

Problems
1. The Klein Corporation’s marketing department, using regression analysis,

estimates the firm’s demand function, the result being

Q � �104 � 2.1P � 3.2I � 1.5A � 1.6Z
R2 � 0.89

Standard error of estimate � 108

where Q is the quantity demanded of the firm’s product (in tons), P is the
price of the firm’s product (in dollars per ton), I is per capita income (in
dollars), A is the firm’s advertising expenditure (in thousands of dollars),
and Z is the price (in dollars) of a competing product. The regression is
based on 200 observations.
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a. According to the computer printout, the probability is 0.005 that the t sta-
tistic for the regression coefficient of A would be as large (in absolute terms)
as it is in this case if in fact A has no effect on Q. Interpret this result.

b. If I � 5,000, A � 20, and Z � 1,000, what is the Klein Corporation’s
demand curve?

c. If P � 500 (and the conditions in part b hold), estimate the quantity
demanded of the Klein Corporation’s product.

d. How well does this regression equation fit the data?

2. Since all the Hawkins Company’s costs (other than advertising) are essen-
tially fixed costs, it wants to maximize its total revenue (net of advertising
expenses). According to a regression analysis (based on 124 observations)
carried out by a consultant hired by the Hawkins Company,

Q � �23 � 4.1P � 4.2I � 3.1A

where Q is the quantity demanded of the firm’s product (in dozens), P is
the price of the firm’s product (in dollars per dozen), I is per capita income
(in dollars), and A is advertising expenditure (in dollars).
a. If the price of the product is $10 per dozen, should the firm increase

its advertising?
b. If the advertising budget is fixed at $10,000, and per capita income

equals $8,000, what is the firm’s marginal revenue curve?
c. If the advertising budget is fixed at $10,000, and per capita income

equals $8,000, what price should the Hawkins Company charge?

3. The 1980 sales and profits of seven steel companies were as follows:

Sales Profit
Firm ($ billions) ($ billions)

Armco 5.7 0.27
Bethlehem 6.7 0.12
Bundy 0.2 0.00
Carpenter 0.6 0.04
Republic 3.8 0.05
U.S. Steel (now USX) 12.5 0.46
Westran 0.5 0.00

a. Calculate the sample regression line, where profit is the dependent vari-
able and sales is the independent variable.

b. Estimate the 1980 average profit of a steel firm with 1980 sales of $2
billion.

c. Can this regression line be used to predict a steel firm’s profit in 2006?
Explain.
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4. The Cherry Manufacturing Company’s chief engineer examines a random
sample of 10 spot welds of steel. In each case, the shear strength of the
weld and the diameter of the weld are determined, the results being as 
follows:

Shear strength Weld diameter
(pounds) (thousandths of an inch)

1,680 190
1,800 200
1,780 209
1,885 215
1,975 215
1,025 215
1,100 230
1,030 250
1,175 265
1,300 250

a. Does the relationship between these two variables seem to be direct or
inverse? Does this accord with common sense? Why or why not? Does
the relationship seem to be linear?

b. Calculate the least-squares regression of shear strength on weld diameter.
c. Plot the regression line. Use this regression line to predict the average

shear strength of a weld 1/5 inch in diameter. Use the regression line to
predict the average shear strength of a weld 1/4 inch in diameter.

5. The Kramer Corporation’s marketing manager calculates a regression, where
the quantity demanded of the firm’s product (designated as “C1”) is the
dependent variable and the price of the product (designated as “C2”) and
consumers’ disposable income (designated as “C3”) are independent vari-
ables. The Minitab printout for this regression follows:
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a. What is the intercept of the regression?
b. What is the estimated regression coefficient of the product’s price?
c. What is the estimated regression coefficient of disposable income?
d. What is the multiple coefficient of determination?
e. What is the standard error of estimate?
f. What is the probability that the observed value of the F statistic could

arise by chance, given that neither of the independent variables has any
effect on the dependent variable?

g. What is the probability, if the true value of the regression coefficient
of price is zero, that the t statistic is as large (in absolute terms) as we
observe?

h. What is the probability, if the true value of the regression coefficient
of disposable income is zero, that the t statistic is as large (in absolute
terms) as we observe?

i. Describe briefly what this regression means.

6. Railroad executives must understand how the costs incurred in a freight yard
are related to the output of the yard. The two most important services per-
formed by a yard are switching and delivery, and it seems reasonable to use
the number of cuts switched and the number of cars delivered during a par-
ticular period as a measure of output. (A cut is a group of cars that rolls as
a unit onto the same classification track; it is often used as a unit of switch-
ing output.) A study of one of the nation’s largest railroads assumed that

Ci � A � B1Si � B2Di � ei

where Ci is the cost incurred in this freight yard on the ith day, Si is the
number of cuts switched in this yard on the ith day, Di is the number of
cars delivered in this yard on the ith day, and ei is an error term. Data were
obtained regarding Ci, Si, and Di for 61 days. On the basis of the proce-
dures described in this chapter, these data were used to obtain estimates of
A, B1, and B2. The resulting regression equation was

Ĉ i � 4,914 � 0.42Si � 2.44Di

where Ĉi is the cost (in dollars) predicted by the regression equation for the
ith day.19

a. If you were asked to evaluate this study, what steps would you take to
determine whether the principal assumptions underlying regression
analysis were met?

19For a much more detailed account of this study, see E. Mansfield and H. Wein, “A Managerial Appli-
cation of a Cost Function by a Railroad,” a case in the Study Guide accompanying this textbook.
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b. If you were satisfied that the underlying assumptions were met, of what
use might this regression equation be to the railroad? Be specific.

c. Before using the study’s regression equation, what additional statistics
would you like to have? Why?

d. If the Durbin-Watson statistic equals 2.11, is there evidence of serial
correlation in the residuals?

7. Mary Palmquist, a Wall Street securities analyst, wants to determine the
relationship between the nation’s gross domestic product (GDP) and the
profits (after taxes) of the General Electric Company. She obtains the fol-
lowing data concerning each variable:

Gross domestic product General Electric’s profits
Year (billions of dollars) (millions of dollars)

1965 1,688 355
1966 1,753 339
1967 1,796 361
1968 1,868 357
1969 1,936 278
1970 1,982 363
1971 1,063 510
1972 1,171 573
1973 1,306 661
1974 1,407 705
1975 1,529 688
1976 1,706 931

a. What are the least-squares estimates of the intercept and slope of the
true regression line, where GE’s profits are the dependent variable and
GDP is the independent variable?

b. On the average, what effect does a $1 increase in gross domestic prod-
uct seem to have on the profits of GE?

c. If Ms. Palmquist feels that next year’s GDP will be $2 trillion, what
forecast of GE’s profits will she make on the basis of the regression?

d. What is the coefficient of determination between the nation’s gross
domestic product and GE’s profits?

e. Do the results obtained in previous parts of this problem prove that
changes in GE’s profits are caused by changes in the gross domestic
product? Can we be sure that GE’s profit is a linear function of the
GDP? What other kinds of functions might be as good or better?

f. If you were the financial analyst, would you feel that this regression
line was an adequate model to forecast GE’s profits? Why or why not?
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8. In the manufacture of cloth, the weft packages should not disintegrate unduly
during weaving. A direct measure of the tendency to disintegrate exists, but it
is laborious and uneconomical to carry out. In addition, there are indirect mea-
sures based on laboratory tests. The Brockway Textile Company would like to
determine the extent to which one of these indirect measures is correlated with
the direct measure. If the correlation is high enough, the firm believes that it
may be able to use the indirect measure instead of the direct measure.

An experiment was carried out in which both the direct and indirect mea-
sures of the tendency to disintegrate were calculated for 18 lots of pack-
ages. The results follow:

Measure

Lot Direct Indirect

1 31 6.2
2 31 6.2
3 21 10.1
4 21 8.4
5 57 2.9
6 80 2.9
7 35 7.4
8 10 7.3
9 0 11.1

10 0 10.7
11 35 4.1
12 63 3.5
13 10 5.0
14 51 4.5
15 24 9.5
16 15 8.5
17 80 2.6
18 90 2.9

a. What is the coefficient of determination between the two measures?
b. What linear regression line would you use to predict the value of the

direct measure on the basis of knowledge of the indirect measure?
c. On the basis of your findings, write a brief report indicating the fac-

tors to be weighed in deciding whether to substitute the indirect mea-
sure for the direct measure.

9. The Kingston Company hires a consultant to estimate the demand function
for its product. Using regression analysis, the consultant estimates the
demand function to be

log Q � 2.01 � 0.148 log P � 0.258 log Z

194 | Chapter 5 Estimating Demand Functions
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where Q is the quantity demanded (in tons) of Kingston’s product, P is the
price (in dollars per ton) of Kingston’s product, and Z is the price (in dol-
lars per ton) of a rival product.
a. Calculate the price elasticity of demand for Kingston’s product.
b. Calculate the cross elasticity of demand between Kingston’s product and

the rival product.
c. According to the consultant, R�2 � 0.98 and the standard error of esti-

mate is 0.001. If the number of observations is 94, comment on the
goodness of fit of the regression.

10. During the 1960s, the Boston and Maine Railroad conducted an experiment
in which it reduced fares by about 28 percent for approximately a year to
estimate the price elasticity of demand. This large fare reduction resulted
in essentially no change in the railroad’s revenues.
a. What problems exist in carrying out an experiment of this sort?
b. Taken at face value, what seemed to be the price elasticity of 

demand?

11. Because of a shift in consumer tastes, the market demand curve for high-
quality red wine has shifted steadily to the right. If the market supply
curve has remained fixed (and is upward sloping to the right), there has
been an increase over time in both the price of such wine and in the
quantity sold.
a. If one were to plot price against quantity sold, would the resulting rela-

tionship approximate the market demand curve?
b. If not, what would this relationship approximate?

12. The Brennan Company uses regression analysis to obtain the following esti-
mate of the demand function for its product:

log Q � 2 � 1.2 log P � 1.5 log I

where Q is quantity demanded, P is price, and I is consumers’ disposable
income.
a. Brennan’s president is considering a 5 percent price reduction. He argues

that these results indicate that such action will result in a 6 percent
increase in the number of units sold by the firm. Do you agree? Why
or why not?

b. The firm’s treasurer points out that, according to the computer print-
out, the probability that the t statistic of log P is as large (in absolute
value) as it is, given that log P has no real effect on log Q, is about
0.5. He says that the estimate of the price elasticity is unreliable. Do
you agree? Why or why not?

c. How can the firm obtain a more accurate estimate of the price elastic-
ity of demand?
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20To derive this result, we square both sides of equation (5.17) and sum the result over all values
of i. We find that

�
n

i�1
(Yi � Y� )2 � �

n

i�1
[(Yi � Ŷî ) � (Ŷî � Y� )]2

� �
n

i�1
(Yi � Ŷî )2 � �

n

i�1
(Ŷî � Y� )2 � 2 �

n

i�1
(Yi � Ŷî )(Ŷî � Y�)

The last term on the right hand side equals zero, so equation (5.18) follows.

Appendix: The Coefficient of Determination 
and the Concept of Explained Variation

In this appendix, we provide a fuller explanation of what the coefficient of
determination is and how it can be interpreted. To begin with, we must discuss
the concept of variation, which refers to a sum of squared deviations. The total
variation in the dependent variable Y equals

�
n

i�1
(Yi � Y�)2 (5.16)

In other words, the total variation equals the sum of the squared deviations of
Y from its mean.

To measure how well a regression line fits the data, we divide the total vari-
ation in the dependent variable into two parts: the variation that can be
explained by the regression line and the variation that cannot be explained by
the regression line. To divide the total variation in this way, we must note that,
for the ith observation,

(Yi � Y�) � (Yi � Ŷi) � (Ŷi � Y�) (5.17)

where Ŷi is the value of Yi that would be predicted on the basis of the regres-
sion line. In other words, as shown in Figure 5.13, the discrepancy between Yi

and the mean value of Y can be split into two parts: the discrepancy between
Yi and the point on the regression line directly below (or above) Yi and the dis-
crepancy between the point on the regression line directly below (or above) Yi

and Y�.
It can be shown that20

�
n

i�1
(Yi � Y�)2 � �

n

i�1
(Yi � Ŷi)2 � �

n

i�1
(Ŷi � Y�)2 (5.18)
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The term on the left-hand side of this equation shows the total variation in the
dependent variable. The first term on the right-hand side measures the varia-
tion in the dependent variable not explained by the regression. This is a rea-
sonable interpretation of this term, since it is the sum of squared deviations of
the actual observations from the regression line. Clearly, the larger is the value
of this term, the poorer the regression equation fits the data. The second term
on the right-hand side of the equation measures the variation in the dependent
variable explained by the regression. This is a reasonable interpretation of this
term, since it shows how much the dependent variable would be expected to
vary on the basis of the regression alone.

To measure the closeness of fit of a simple regression line, we use the coef-
ficient of determination, which equals

1 � (5.19)
�

n

i�1
(Yi � Ŷi)2

��

�
n

i�1
(Yi � Y�)2

Division of (Yi � Y�) into Two Parts: (Yi � Ŷi) and 
(Ŷi � Y)

This division is carried out to measure how well the regression line fits the data.

F I G U R E

5.13

Y

X

Yi – Ŷi

0

Regression line

Yi

 Ŷi

 Ŷi – Y
–

 Y
–

4911_e05_p152-199  11/8/04  10:48 AM  Page 197



198 | Chapter 5 Estimating Demand Functions

In other words, the coefficient of determination equals

1 �

� (5.20)

Clearly, the coefficient of determination is a reasonable measure of the close-
ness of fit of the regression line, since it equals the proportion of the total vari-
ation in the dependent variable explained by the regression line. The closer it
is to 1, the better the fit; the closer it is to 0, the poorer the fit.

When a multiple regression is calculated, the multiple coefficient of deter-
mination is used to measure the goodness of fit of the regression. The multiple
coefficient of determination is defined as

R2 � 1 � (5.21)

where Ŷi is the value of the dependent variable that is predicted from the regres-
sion equation. So, as in the case of the simple coefficient of determination cov-
ered earlier,

R2 � (5.22)

This means that R2 measures the proportion of the total variation in the depen-
dent variable explained by the regression equation.

variation explained by regression
����

total variation

�
n

i�1
(Yi � Ŷi)2

��

�
n

i�1
(Yi � Y�)2

variation explained by regression
����

total variation

variation not explained by regression
�����

total variation
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