Labor Economics

Rudolf Winter-Ebmer

October 2018

Minimum Wages

Minimum Wages: What are We Talking About?

- Unlike other institutions, MW acts on minima. It sets a wage floor.
- The first minimum wage was introduced in the United States in 1938 and paid 25 cents per hour. In 2007 the federal minimum wage was \$5.85, in nominal terms 23 times larger, but, in real terms, only 1.4 times larger than 70 years ago.

Types of minimum wages:

- National, government-legislated (possible consultation with trade unions and employers' associations).
- National, outcome of collective bargaining agreements and extended to all workers.
- Industry-level minimum resulting from industry-level collective bargaining and extended to all workers in that industry.

Within-country variation

- Not easy to collect info not always a unique minimum wage
- Cross-industry when set at the industry level cross regional when large differences in cost-of-living
- Age dependent: different minimum for youngsters
- Some countries: acknowledging on the job training, returns to experience & family status
- Austria: "Kollektivvertrag" different by industry and job tenure, only small number of persons not covered at all, much lower for apprentices
- Germany: new coalition decided on MW

Measures

- Ratio of the Minimum Wage to the Median (or average) Wage
- Coverage of the minimum wage: share of workers occupying jobs eligible for the MW
- Kaitz Index: minimum wage as a proportion of the average wage adjusted by the industry-level coverage of the MW
- Fraction affected: workers with a wage between the old and the new minimum wage
- Spike at the minimum wage (share of workers paid exactly the minimum wage)

TABLE 2.1 Minimum wages in OECD countries

	Ratio MW to median wage (%)		Monthly MW, 2010	Taxonomy		Percentage earning	Youth	
	1990 (1)	2010 (2)	Difference (3)	(euros) (4)	System ^a (5)	Type ^b (6)	MW (2005) (7)	
Australia	63	54	-9	1,670	N-S	1	_	Yes
Belgium	56	52	-4	1,388	N	2	_	Yes
Canada	38	44	6	1,187	P	1	_	Limited
Czech Republic	_	35	_	311	N	1	2.0	Yes
Denmark	_	_	_	_	S	3	_	Yes
Estonia	_	41	_	278	N	1	4.8	No
France	52	60	8	1,344	N	1	16.8	Limited
Germany	_	_	0	_	S	3	_	Some
Greece	57	49	-8	863	N	2	_	No
Hungary	44	47	3	257	N	1	8.0	No
Ireland	_	52	_	1,462	N	1	3.3	Yes
Italy	_	_	_	_	S	3		Some
Japan	30	37	7	1,069	R	1	_	Limited
Korea	30	41	11	605	N	1	_	Yes
Luxembourg	37	42	5	1,725	N	1	11.0	Yes
Mexico c	31	19	-12	_	R	1	_	No
Netherlands	56	47	-9	1,416	N	1	2.2	Yes
New Zealand	52	59	7	1,196	N	1	_	Yes
Poland	17	45	28	318	N	1	2.9	No
Portugal	53	56	3	554	N	1	4.7	No
Slovak Republic	_	46	_	308	N	1	1.7	Yes
Slovenia		58	_	734	N	1	2.8	No
Spain	47	44	-3	739	N	1	0.8	No
Sweden	_	_	_	_	S	3	_	Yes
Turkey	46	67	21	_	N	1	_	Yes
United Kingdom	_	46	_	1,169	N	1	1.8	Yes
United States	36	39	3	949	N-S	1	1.3	Limited

Sources: Dolton and Bondibene (2011); OECD Minimum Wage Database.

 $\textit{Note:} \ \mathsf{MW} = \mathsf{minimum} \ \mathsf{wage;} \\ \boldsymbol{-\!\!\!\!-\!\!\!\!-} = \mathsf{not} \ \mathsf{available}.$

a. System: N = national; N-S = national-state; S = sectoral collective agreement; R = regional; P = provincial. b. Type: 1 = national, government legislated; 2 = national, bargaining; 3 = industry level, bargaining (see main text).

Evolutions

FIGURE 2.1 Ratio of minimum to median wage, 1971–2010 Source: OECD minimum wage database.

▶ Collective Bargaining vs. Government Legislation

Problems with these Measures

- Spillover effects: Increase of the minimum wage may raise the average wage leaving the MW/AveWa ratio unchanged. Also increase of MW may reduce wages in the uncovered segment (absorbing more low-skill workers)
- Gross measure, but taxation is progressive
- Earnings should not include bonuses and overtime premiums (measurement issue)

A Competitive Labor Market

FIGURE 2.2 The minimum wage in a competitive labor market

Pure monopsonist

FIGURE 2.3 Monopsony and the minimum wage

 L^s labor supply L^d labor demand MLC marginal labor cost \underline{w} minimum wage w^m monopsony wage w^* competitive wage

Pure monopsonist

- Monopsonist has to pay all workers the same wage
- Maximizes profits by setting $MLC = L^d$ (value of marginal product)
- B: L^m , w^m
- Minimum wage changes MLC-Curve

Pure monopsonist

FIGURE 2.3 Monopsony and the minimum wage

Market power – monopsony

- Classical example: mining company in remote area
- Not realistic nowadays
- Modern monopsony: many employers, but few vacancies to apply for
- Wage posting: a higher wage attracts more applicants

The degree of monopsony power

Let y(L) be the value of the marginal product of labor and $L^s = G(w)$ the aggregate labor supply. Total labor costs C are wL. For marginal labor costs $\frac{dC}{dL} = w + \frac{dw}{dL}L = w(1 + \frac{dw}{w}\frac{L}{dL})$ so marginal labor costs $\frac{dC}{dL} = w(1 + \varepsilon)$, where ε is the inverse elasticity of labor supply. At the monopsony equilibrium:

$$y(L^m) = w^m(1+\varepsilon), \tag{1}$$

The wedge measures the degree of monopsonistic power of the firm.

$$\frac{y(L^m) - w^m}{w^m} = \varepsilon, \tag{2}$$

is decreasing with the wage elasticity of labor supply: when labor supply is infinitely elastic, ε tends to zero and hence monopsonistic power is zero.

Monopsonistic competition

- Search costs and labor market frictions can lead to (restricted) monopsony power of firms
- $L_i^s = f(B_i, w_i/w) * L^s(w)$
 - Labor supply for firm i
 - B_i: firm-specific shock
 - L(w) aggregate labor supply for industry
 - w_i/w relative wage, firm i offers
 - at perfect competition f is perfectly elastic w.r.t. relative wage
- Similar to Dixit/Stiglitz model of monopolistic competition

MW may increase productivity

- Supply side: productivity of a worker depends on the investment in human capital.
- A minimum wage induces workers to acquire education in order not to be crowded out.
- If a firm has to pay a higher minimum wage anyway, they may want to upgrade the job by more training
- Similar effect may arise on the demand side: minimum wage increases the number of vacancies for high-productivity jobs issued by employers (they may substitute low-productivity jobs which are not profitable anymore).
- BUT:
- Labor supply vs. education: incentives for education lower, because low-educated get higher wage

Dual Labor Markets

FIGURE 2.4 A dual labor market and the minimum wage: (a) formal sector; (b) informal sector

Large literature on job losses due to MW

- Dolado and Teuling (1996) cross-country study: negative effects on youth employment
- USA, elasticity of teenage employment w.r.t. MW -0.1- -0.3
- Lower in Europe
- Dolton (2011), OECD countries, negative for teenagers, no effect for adults

A controversial study: Card & Krueger (1994)

"Natural experiment"

- Impact of increases in the minimum wage in New Jersey (treatment group) in April 1992 from \$4.25 to \$5.05: increase by 80 cents.
- Control group: Pennsylvania, where the minimum wage remained at \$4.25 throughout this period.
- New Jersey and Pennsylvania are bordering states with similar economic structures
- Data on employment in 410 fast-foods in the two states in March 1992 (before the MW hike) and in December (after).

A controversial study: Card & Krueger (1994)

FIGURE 2.5 The wage distribution (a) before and (b) after an increase in the minimum wage $\frac{1}{2}$

Employment effects – a simple approach

Number of full-time equivalents working in a full-time restaurant:

	Employment		
	New Jersey	Pennsylvania	
March 1992	20.4	23.3	
December 1992	21.0	21.2	
Difference	+0.6	-2.1	
Difference-in-differences		2.7	

Monopsony effects – what about prices?

Price of a full meal in \$:

	Price		
	New Jersey	Pennsylvania	
March 1992	3.35	3.04	
December 1992	3.41	3.03	
Difference	0.06	-0.07	
Difference-in-differences		0.07	

Other studies

- Another "natural experiment"
 - Effect of the introduction of a MW in the UK April 1999
 - Comparison of employment outcomes of individuals just below the MW and higher up the wage distribution (1st difference) before and after (2nd difference) the introduction of the minimum wage.
 - No adverse effects (adult and youth, men and women)
- Other studies: generally negative effects on employment, notably among youngsters.

Effects on profitability in the UK

	Low (av	verage wage)	Profit margin	
	Low-wage firm	Nonlow-wage firm	Low-wage firm	Nonlow-wage firm
Pre-NMW	2.149	2.775	0.128	0.070
Post-NMW	2.378	2.893	0.089	0.058
Difference	0.229	0.118	-0.039	-0.012
Difference-in-differences	0.111		_	-0.027

Note: NMW = national minimum wage; Profit margin = ratio of profits to sales.

Studies based on workers histories

- Since the late 1990s, work combining data on workers and firms (matched employee-employer micro data)
- Focus on the economy as a whole and on the effects on employment and hours
- Increase in MW by 1% in France reduces probability of men (women) keeping a job at the MW by 1% (1.3%)
- Increase by 50% of MW in Portugal reduced hirings but increased job retention

Policy issues

Should the minimum wage be reduced or increased?

• Should there be a youth minimum wage?

Should there be a youth minimum wage?

Youth Minimum Wage as a percentage of the adult minimum wage by age

Unemployment Rates of Prime Age Workers and Young Workers (2010)

FIGURE 2.7 Unemployment rates of prime-aged workers and young workers, 2010 Source: OECD (2011b).

Hyslop and Stillman (2007): New Zealand

Minimum wage (percentage of adult wage)

	Treatme	Control group	
	Aged 16-17	Aged 18–19	Aged 20–25
Before March 5, 2001	60	60	100
From March 5, 2001	70	100	100
From March 18, 2002	80	100	100
Increase 2000–2003 (%)	50	87	13

Effects on youth Employment

	Treatme	Control group	
Indicator	Aged 16-17	Aged 18–19	Aged 20–25
Employment rate (%)			
Before	41.3	53.8	64.0
After	43.2	56.2	65.4
Difference	1.9	2.4	1.4
Difference-in-differences	0.5	1.0	
Weekly working hours			
Before	16.4	27.4	34.8
After	19.0	28.2	33.8
Difference	2.4	0.8	-1.0
Difference-in-differences	3.4	1.8	

It seems labor supply of youth increased, educational attainment decreased and unemployment increased as well.

Why Does a MW exist?

- Efficiency: remedies market failures, e.g. deriving from excessive monopsonistic power
- Equity: reduces earnings inequality by supporting incomes of low-earning workers, for example, low-skilled workers.

Who profits from MW?

- Distributional issue: those, who hold on to job, profit; others not.
- If wage elasticity of labor demand > -1, \Rightarrow income share of min. wage earners increases, when MW rises.
- Who are MW earners?
 - regular workers, students, marginally attached workers?
- If labor turnover is high, employment costs (losses) are better distributed among population.
- •
- MW generally seen as social policy, but not employment policy

Review Questions

- Why are there so few workers earning the minimum wage?
- Why are minimum wages age dependent?
- When does a minimum wage increase employment?
- 4 How does a minimum wage affect poverty?

Exercise:

Suppose that w is the wage and L is employment. The supply curve of low wage workers is given by w = 10 + 2L. The demand curve is given by w = 70 - 2L.

- (a) What are the equilibrium levels of wage, employment, and unemployment?
- (b) What happens to employment and unemployment if a minimum wage of 40 euros is introduced?
- (c) What happens to employment and unemployment if a minimum wage of 60 euros is introduced?

Minimum Wage and Monopsony

The pure monopsonist chooses the employment level that maximizes profits:

$$\pi^m = \frac{AL^{1-\eta}}{1-\eta} - wL,\tag{3}$$

subject to being on the labor supply curve $w=L^{\varepsilon}$, Therefore $\pi^m=\frac{AL^{1-\eta}}{1-\eta}-L^{1+\varepsilon}$. Deriving the first-order condition and substituting:

$$L^{m} = \left[\frac{A}{1+\varepsilon}\right]^{\frac{1}{\varepsilon+\eta}} < A^{\frac{1}{\varepsilon+\eta}} = L^{*}$$
 (4)

and

$$w^{m} = \left[\frac{A}{1+\varepsilon}\right]^{\frac{\varepsilon}{\varepsilon+\eta}} < A^{\frac{\varepsilon}{\varepsilon+\eta}} = w^{*}; \tag{5}$$

Bargaining or Government Setting?

With **bargaining** the socially optimal wage will deviate by a mark-up factor $(\mu = 1 + t)$, where t is the wedge between L^s and L^d , that is a function of labor demand and supply elasticities, as well as distributional weights of employers and workers:

$$\mu = \frac{(1-\eta) + \beta(\eta + \varepsilon)}{(1-\eta)(1+\varepsilon)} \tag{6}$$

Government legislation: the outcome depends on the weights the government attaches to workers and employers. Assume that the Government maximizes a Nash-Bernoulli social welfare function line, the mark-up imposed by the Government over the reservation wage is:

$$\mu^{G} = \frac{(1-\eta) + \beta^{G}(\eta + \varepsilon)}{(1-\eta)(1+\varepsilon)} \tag{7}$$

where β^G represents the distribution weight that the government attaches to wage-earners and 1 $-\beta^G$ is a measure of the electoral power of employers and profit-earners .

Efficiency Wages

The profits of the firm are equal to

$$\pi = f(e(w)L) - wL$$

The firm has two degrees of freedom, wage and employment, so there are two first-order conditions:

$$\frac{\partial \pi}{\partial L} = 0 \to f'e(w) - w = 0 \to f'e(w) = \frac{w}{e(w)}$$
 (8)

$$\frac{\partial \pi}{\partial w} = 0 \to f'e(w)L - L = 0 \to f'e(w) = \frac{\partial w}{\partial e(w)}$$
 (9)

Combining these two first-order conditions we find that

$$\frac{\frac{\partial e(w)}{e(w)}}{\frac{\partial w}{\partial w}} = 1 \text{ "Solow condition"} \tag{10}$$

ADDITIONAL MATERIAL:

Collective Bargaining vs. Government Legislation

▼ Evolutions

Difference-in-Differences estimators

 If the employment L in state i is determined by an equation of this type:

$$L_i = \alpha \underline{\mathbf{w}}_i + \mathbf{X}_i \gamma$$

where \underline{w}_i is the level of the minimum wage and X_i contains all the other variables which influence L_i .

 If we have two observations which refer to two dates for the same State, so:

$$\Delta L_i = L_{i2} - L_{i1} = \alpha (\underline{w}_{i2} - \underline{w}_{i1}) + (X_{i2} - X_{i1})\gamma$$

Difference-in-Differences estimators (2)

 If we also have data for another state j which is identical to i in each characteristic except for w, which is not changed, so:

$$\Delta L_j = (X_{j2} - X_{j1})\gamma$$

then:

$$\Delta L_i - \Delta L_i = \alpha (\underline{\mathbf{w}}_{i2} - \underline{\mathbf{w}}_{i1})$$

• In our case, if we think that New Jersey and Pennsylvania are similar enough, we can obtain an estimation of α by simply calculating the difference of the difference.

Card and Krueger(1994)