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Abstract 
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market. We first show that the clearinghouse models in the spirit of Stahl (1989) generate an 
inverted‐U  relationship  between  information  and  price  dispersion. We  construct  a  new 
measure of information based on precise commuter data from Austria. Regular commuters 
can freely sample gasoline prices on their commuting route, providing us with spatial variation 
in the share of informed consumers. We use detailed information on gas station level prices 
to construct price dispersion measures. Our empirical estimates of the relationship are in line 
with the theoretical predictions. 
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1 Introduction

Price competition in homogeneous goods markets rarely results in market outcomes in line

with the “law of one price.” On the contrary, price dispersion is ubiquitous and differences

in location, cost or services attributed to seemingly homogeneous goods cannot fully explain

observed price dispersion. In his seminal paper on “The Economics of Information,” Stigler

(1961) offered the first search-theoretic rationale for price dispersion. In fact, Stigler claims

that “price dispersion is a manifestation - and, indeed, it is the measure - of ignorance in the

market” (p. 214). Following Stigler’s seminal work, it has been shown that price dispersion

can arise as an equilibrium phenomenon in a homogeneous goods market with symmetric

firms if consumers are not fully informed about prices (see Baye et al. (2006)).

We theoretically and empirically examine the relationship between information and price

dispersion. We first derive the global relationship between information and price dispersion

in a “clearinghouse model” as introduced by Varian (1980) and further developed by Stahl

(1989). Consumers differ in their respective degree of informedness. For some, obtaining an

additional price quote is costly. Others are aware of all prices charged in the relevant market:

they have access to the “clearinghouse.” At the very extremes, this model predicts no price

dispersion. If no consumer has access to the clearinghouse, all firms will charge the monopoly

price. Conversely, if all consumers are fully informed, this corresponds to Bertrand compe-

tition, and price equals marginal cost. While the existing literature has observed that price

dispersion is not a monotone function of the fraction of informed consumers (see Conclusion

3 in Baye et al. (2006)), we prove that the model generates an inverse-U relationship globally.

We then test this prediction. Price dispersion has been observed and analyzed in a

large number of markets (Baye et al. (2006)). These studies examine a variety of issues,

including the difference between online and offline price dispersion, the effect of the number

of sellers, the relationship between dispersion and purchase frequency, and the dynamics of

online price dispersion. Empirical studies focusing on the impact of consumer information

on price dispersion, however, are rare; the challenge here is to find a good measure for
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the fraction of informed consumers. Sorensen (2000) finds empirical evidence that purchase

frequency (of drugs) is negatively correlated with both price-cost margins and dispersion,

which is interpreted as evidence in support of search models. Analyzing price dispersion

in the market for life insurances, Brown and Goolsbee (2002) use variation in the share of

consumers searching on the Internet over a six-year period as their measure of consumer

information. They find that the early increase in internet usage has resulted in an increase

in price dispersion at very low levels and in a decrease later on. Tang et al. (2010) examine

the impact of changes in shopbot use over time on pricing behavior in the Internet book

market. They observe that an increase in shopbot use is correlated with a decrease in price

dispersion over time. Sengupta and Wiggins (2014) find no significant relationship between

price dispersion and the share of internet usage for airline fares.

While analysis of price dispersion in online markets versus offline markets has provided

useful insights, we argue that it may be preferable to look at the relationship between infor-

mation and price dispersion in an offline market. First, Ellison and Ellison (2005) and Ellison

and Ellison (2009) question the extent to which the Internet has actually reduced consumer

search costs. They provide evidence that firms in online markets often engage in “bait and

switch” as well as “obfuscation” strategies that frustrate consumer search and make search

more costly. Second, Baye and Morgan (2001) stress that consumers’ and firms’ decisions to

use Internet shopbots are endogenous. Consumers’ expected gains from obtaining informa-

tion from shopbots will increase with the dispersion of prices in the market, which implies

that a correlation between the share of internet users and price dispersion cannot be given a

causal interpretation.1 Third, firms may charge different prices on and offline.

Our paper follows a different approach. We adopt an alternative interpretation of the

“clearinghouse” by employing spatial variation in commuting behavior. Commuters are able

to freely sample all price quotes for gasoline along their commute. Using detailed data

on commuting behavior from the Austrian census, we construct the share of commuters

1Recently it has become possible to compare gasoline prices online. This was not the case during our
sample period (1999-2005).
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passing by an individual gas station. We use this as our measure of the fraction of informed

consumers. We combine this with data on retail gasoline prices at the station level to test

the relationship between consumer information and price dispersion. To the best of our

knowledge, this is the first attempt to create a measure of informed consumers not related

to internet usage or access. We believe that our setting is closer in spirit to the seminal

clearinghouse models of Varian (1980) and Stahl (1989) for the following reasons: (a) firms’

abilities to obfuscate consumers’ search and learning efforts are limited in this market, (b)

gasoline is a homogeneous product and seller characteristics can be adequately controlled, (c)

we observe substantial variation in our measure of the share of informed consumers, enabling

us to test the global prediction derived from theory, and (d) the consumers’ decisions to

commute - and thus to become better informed - is not determined by regional differences in

price dispersion, which allows a causal interpretation of our empirical results.

Our empirical findings are surprisingly robust. For all commonly used measures of price

dispersion, we cannot reject the null-hypothesis of an inverted-U relationship. This result is

also robust regarding different market definitions. We further find evidence in favor of a first

order implication of the model: Price levels decline with the fraction of informed consumers.

The remainder of the paper is organized as follows. Section 2 presents the clearinghouse

model and derives the testable prediction regarding the relationship between information and

price dispersion. Section 3 describes the industry, the retail price data, and our construction

of a measure of informed consumers based on the information on commuting behavior in the

Census. Section 4 presents the empirical results. Section 5 concludes.

2 Information and Price Dispersion in Clearinghouse

Models

In this section, we present a version of Stahl (1989)’s search model with unit demand, which

encompasses Varian (1980)’s model of sales as a special case. There is a finite number of firms
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N > 1 selling a homogeneous product. They face constant marginal cost c and compete in

prices. There is a unit mass of consumers with unit demand for the product and willingness to

pay v > c. A share µ ∈ (0, 1) of consumers comprises of “informed” consumers who observe

all prices through the clearinghouse. We sometimes refer to these consumers as “shoppers”,

because they sample all prices. These consumers buy at the lowest price, provided that it

does not exceed their willingness to pay v. The remaining fraction of consumers (1 − µ) is

referred to as “non-shoppers”. They engage in sequential search with costless recall: the first

sample is free, thereafter each sample costs s > 0.2

Equilibrium price distribution. It is well known that for any µ ∈ (0, 1) there is no pure

strategy equilibrium, but rather a unique symmetric mixed strategy equilibrium. The equi-

librium price distribution F (.) is pinned down by the fact that a firm should be indifferent

to setting any price p in support
[
p, p̄
]

or setting price p̄:

(p− c)
(
µ (1− F (p))N−1 + (1− µ)

1

N

)
= (p̄− c) (1− µ)

1

N
, (1)

which yields:

F (p) = 1−
(

1− µ
µ

1

N

p̄− p
p− c

) 1
N−1

(2)

for all p ∈
[
p, p̄
]
. Solving for F (p) = 0, we obtain the lower bound of the support: p =

c + p̄−c
1+ µ

1−µN
. The upper bound of the support is pinned down by the non-shoppers’ optimal

search behavior: Janssen et al. (2005) and Janssen et al. (2011) show that p̄ = min(ρ, v),

where r = ρ ≡ c+ s
1−A and A =

∫ 1

0
dz

1+ µ
1−µNz

N−1 ∈ (0, 1).

Observe that if s ≥ v − c, then non-shoppers never find searching profitable and our

model is equivalent to Varian’s model of sales. In this case, ρ > v and p̄ = v for all (µ,N),

2Recent extensions and modifications of the Stahl (1989)-model typically address the assumptions imposed
on non-shoppers. These alterations include models where the first price quote is costly as well (Janssen et al.,
2005), where revisiting a store is costly(Janssen and Parakhonyak, 2014), where uninformed consumers are
uncertain about the firms’ underlying production costs (Janssen et al., 2011), or where non-shoppers only
know the support of the underlying price distribution (Parakhonyak, 2014). In Lach and Moraga-Gonzalez
(2012) the consumers’ knowledge about prices is described by a more general distribution rather than the
strict dichotomy of the Varian (1980)- and the Stahl (1989)-model. Stahl (1996) and Chen and Zhang (2011)
allow for heterogeneous search costs.
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as in Varian (1980). Conversely, if s < v − c, then there exists a unique µ̂ ∈ (0, 1) such that

p̄ = v if µ ≤ µ̂ and p̄ = ρ if µ ≥ µ̂.3 We thus have fully characterized the equilibrium price

distribution in terms of the parameters (c, v, s, µ,N).

Expected Price. The expected price is given by

E(p) =

∫ min(ρ,v)

p

pdF (p),

= c+ A ∗ (min(ρ, v)− c),

where the second line follows by using equation (2) and change of variables z = 1− F (p). It

is immediate that the expected price decreases in the fraction of shoppers µ, as both A and

ρ decrease in µ. In order to validate the model, we will first test the following prediction

according to Stahl (1989):

Remark 1. The expected price E(p) is declining in the proportion of informed consumers µ.

The intuition behind this result is very simple. As the proportion of shoppers increases,

firms are increasingly tempted to attract shoppers by charging the lowest price. As a con-

sequence, both the upper bound and the lower bound of the distribution shift down, and

probability mass shifts down everywhere.

Price dispersion. Various measures of price dispersion have been used in the literature.

We will focus on one common measure of price dispersion: the Value of Information (VOI). It

corresponds to a consumer’s expected benefit of becoming informed: the difference between

the expected price and the expected minimum price in the market:

E(p− pmin) =

∫ p̄

p

p
[
1−N [1− F (p)]N−1

]
dF (p). (3)

Substituting the equilibrium price distribution (2) into equation (3) and applying again

3This follows from the fact that ρ is strictly decreasing in µ and has limits +∞ and c + s in 0 and 1,
respectively.
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change of variables z = 1− F (p) yields

E(p− pmin) =

∫ 1

0

(
c+

p̄− c
1 + µ

1−µNz
N−1

)(
1−NzN−1

)
dz,

= (p̄− c)
(
A− 1− µ

µ
(1− A)

)
.

When µ is close enough to zero, p̄ = v and the value of information goes to zero as µ goes

to zero. Conversely, when µ is in the neighborhood of 1, p̄ is equal to either c + s
1−A or v̄.4

In both cases, the value of information goes to zero as µ goes to 1. We prove the following

proposition:

Proposition 1. There is an inverse-U shaped relationship between price dispersion E(p −

pmin) and the proportion of informed consumers µ: there exists a value µ̄ ∈ (0, 1) such that

price dispersion is increasing in µ on (0, µ̄) and decreasing in µ on (µ̄, 1).

Proof. It follows from Lemma 1 in Tappata (2009) that A − 1−µ
µ

(1 − A) is strictly concave

in µ. Combining this with the fact that E(p − pmin) goes to 0 as µ goes to 0 and 1 proves

the proposition for the case s ≥ v − c.

Next, assume s < v − c. Then E(p − pmin) is strictly concave on interval (0, µ̂], and we

now claim that it is strictly decreasing on [µ̂, 1). If µ ≥ µ̂, then v = ρ and E(p − pmin)

simplifies to s
(

A
1−A −

1−µ
µ

)
, which is strictly decreasing in µ by Lemma 1, stated and proven

in Appendix A. This concludes the proof of Proposition 1.

Lemma 1 is proven as follows. We first notice that s
(

A
1−A −

1−µ
µ

)
is strictly decreasing

in µ on (0, 1) if and only if g(x) = B(x)
1−B(x)

− 1
x

is strictly decreasing in x on (0,∞), where

B(x) =
∫ 1

0
dz

1+xNzN−1 . In turn, this is equivalent to B(x) > Γ(x) for all x > 0, where Γ(x)

is the smallest root of a quadratic polynomial. Using a third-order Taylor approximation,

we show that B(x) > Γ(x) when x is in the neighborhood of 0. Next, we show that B(.) is

4To see this, notice that limµ→0A = 1, limµ→1A = 0 and

lim
µ→0

1− µ
µ

(1−A) = lim
µ→0

∫ 1

0

NzN−1

1 + µ
1−µNz

N−1 dz = 1.

7



the solution of a differential equation, and that Γ(.) is a subsolution of the same differential

equation. From this, we can conclude that B(x) > Γ(x) for all x > 0. We refer the reader to

Appendix A for more details.

To see the intuition behind this result, consider starting at µ = 0, where all firms charge

the monopoly price v and there is zero price dispersion. As µ increases, firms have an incentive

to charge lower prices to capture the shoppers. Hence the lower bound of the distribution

shifts down, the support widens, and dispersion increases. As µ increases further, more mass

shifts towards the lower bound. This effect tends to offset the support-widening effect, so

that eventually, price dispersion falls. In the case µ ≥ µ̂, the reserve price ρ is binding, and

therefore, both the upper bound and the lower bound of the distribution shift down: when

firms are constrained by consumers’ optimal search behavior, the support widens less as µ

increases. Consequently, price dispersion decreases for all µ ≥ µ̂.

To summarize, price dispersion is strictly concave on (0, µ̂) and strictly decreasing on

(µ̂, 1). It is therefore a strictly quasi-concave and single-peaked function of the fraction of

shoppers µ.

The following remark generalizes Proposition 1 to the case where shoppers have higher

(or lower) demand than non-shoppers.

Remark 2. Consider the following modification of Stahl (1989)’s model. A shopper is willing

to pay v with probability φ ∈ (0, 1], and to pay 0 with complementary probability 1 − φ. A

non-shopper is willing to pay v (resp. 0) with probability ψ ∈ (0, 1] (resp. 1 − ψ). Then,

there is still an inverse-U shaped relationship between price dispersion and the proportion of

informed consumers.

Proof. Indifference condition (1) becomes:

(p− c)
(
µφ (1− F (p))N−1 + (1− µ)ψ

1

N

)
= (p̄− c) (1− µ)ψ

1

N
. (4)

Define ν(µ) = µφ
µφ+(1−µ)ψ

∈ (0, 1) and notice that dν/dµ > 0. Then, condition (4) is equivalent
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to

(p− c)
(
ν (1− F (p))N−1 + (1− ν)

1

N

)
= (p̄− c) (1− ν)

1

N
,

which is equivalent to condition (1) if we replace µ by ν. This implies that the equilib-

rium mixed strategy in the model with heterogeneous demands and proportion of informed

consumers µ is the same as the equilibrium mixed strategy in Stahl (1989)’s model with

proportion of consumers ν(µ).

Let h(µ) be the value of information in Stahl (1989)’s model. Then, the value of in-

formation in the model with heterogeneous demands is V OI(µ) = h (ν(µ)). h is strictly

quasi-concave (by Proposition 1) and ν is strictly increasing. Therefore, V OI = h ◦ ν is

strictly quasi-concave. Moreover, since ν(0) = 0 and ν(1) = 1, V OI(0) = V OI(1) = 0. It

follows that V OI is inverse-U shaped.

This is a useful result, because one could argue that shoppers’ demand differs systemati-

cally from non-shoppers’ demand in our empirical application.

3 Industry Background and Data

3.1 Commuters as Informed Consumers

The main idea behind our measure of information is that commuters can freely sample prices

along their daily commuting path.5 We therefore rely on the share of long-distance commuters

as a measure of the proportion of shoppers in the market. We implement this idea by sorting

the potential consumers of a given station into two groups based on the length and regularity

of their commute. Long-distance commuters are defined as individuals who commute to work

by car on a daily basis and go beyond the boundaries of their own municipality. Our estimate

of the share of informed consumers frequenting a gas station depends on the relative size of

5Houde (2012) emphasizes the role of commuters in firms’ pricing decisions. Commuters also tend to pur-
chase more fuel than their non-commuting counterparts and therefore gain more from information regarding
the price distribution (Marvel (1976), Sorensen (2000)).
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this group compared to the total size of the station’s market.

Commuter flows

According to the 2001 census, 2,051,000 people in Austria go to work by car on a daily basis.

For 1,396,426 of these people, the commute involves regular travel beyond the boundaries

of their home municipality. We will refer to these consumers as informed consumers. The

Austrian Statistical Office provides detailed information on the number of individuals com-

muting from a given “origin-municipality” o to a different “destination-municipality” d for

each of the 2381 administrative units in Austria. All commuters are assigned to an origin-

destination pair of municipalities based on their home address and their workplace address.6

Since municipalities are generally very small regional units, this allows us to create a detailed

description of the commuting patterns in Austria. The average (median) municipality is

13.8 (9.4) square-miles large, and has 3373 (1575) inhabitants, 1.19 (1) gasoline stations and

positive commuter flows to 51 (32) other municipalities.

In order to assign commuter flows to gas stations we merge the municipality-level data

on the spatial distribution of commuters with data on the precise location of each station

within the road network using GIS software (WiGeoNetwork Analyst, ArcGIS). This allows

us to determine the number of individuals residing in the municipality where a given station

i is located, who commute to a different municipality. We denote this number by Cout
i ,

the number of individuals commuting out of the municipality where station i is located.

Commuters who work in the municipality of station i but live in a different municipality also

belong to the station’s informed potential consumers. We denote this number by Cin
i , the

number of consumers commuting into the municipality where station i is located.

For a complete measure of informed consumers, we also need to take into account con-

sumers passing by a station directly, despite neither working nor living in the municipality

where it is located. We refer to these consumers as transit (tr) commuters and denote them

6The data were prepared by the Austrian Federal Ministry for Transport, Innovation and Technology for
the project “Verkehrsprognose Österreich 2025+”. We thank the ministry for sharing the data with us.
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by Ctr
i . We assume that transit consumers are familiar with the prices of gasoline stations

located directly on the commuting path, but not with the entire gasoline market in the mu-

nicipality. As such, they are likely to be part only of the market of stations which are located

directly on their commuting path. In order to obtain a measure Ctr
i of transit consumers, we

use the shortest path algorithm integrated in ArcGIS. The algorithm computes the optimal

route from the origin municipality o to the destination d by minimizing the time required

to complete the trip. As the location of each consumer is only known at the municipality

level, we approximate the location of residence and workplace of commuters with the address

of the administrative center of the respective municipalities (usually the town hall) when

calculating distances. Given the small size of the municipalities, we can determine quite ac-

curately which road transit commuters take. Our prediction will be less accurate in densely

populated municipalities, as high population densities usually go hand in hand with more

complex infrastructure. We therefore drop gas stations located in Vienna from the sample

in our main specification.

Assigning commuter flows to gas stations

We use the shortest path algorithm to determine whether a commuter flow will pass through

a given station i, by comparing the length of the optimal route from the origin municipality

to the destination municipality (distod) with the length of the optimal route between the two

which passes through the station (see Figure 1). The distance of the optimal route between

the origin o and the station i is denoted by distoi and the distance between the gas station

and the destination is given by distid. If the difference in the calculated distances is less

than our chosen critical value (dist),7 the commuter flow might pass by the station and as

such plays a role in the local market. The commuter flow from municipality o (origin) to

7We allow for this slack variable in distance when passing by station i as the translation of the address
data to coordinates as well as the mapping of these coordinates might not be precise. Moreover, stations
located on an intersection might be mapped on either the main or the intersecting road. Note that a critical
value of dist = 250 meters means that a station is defined to be on the commuting path if it is located less
than 125 meters off the optimal route.
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Figure 1: Commuter flows

We illustrate the commuter flow assignment using two stations in the municipality of Kremsmünster as an
example. Commuter flows from and to Kremsmünster are automatically assigned to the two stations located
in it (33+38+68+9 commuters are added to the informed share of consumers). The assignment of the 1
commuter from Rohr to Sattledt to one of the stations (e.g. Lagerhaus) is based on the distance of the
time-minimizing path from Rohr to Sattledt (approx. 12,9 kilometers). This distance is compared to the
distance from Rohr to the station (5.2 kilometers) and the distance from the station to Sattledt (7.8 km).
If the commuter passes the Lagerhaus station in transit, he will have to travel 5.2+7.8=13 kilometers. This
is 100 meters more than he would travel otherwise. 100 meters is within our critical distance, so we would
count the commuter as one of the informed consumers in the market of the Lagerhaus station.

municipality d (destination) is assigned to station i whenever

distoi + distid − distod < dist. (5)

For our main specification we use a small critical distance (dist = 250 meters) in order to

ensure that the price of the station can be sampled without turning off the road (the station

is visible without a deviation from the commuting route).

If the distance between the origin and the destination municipality is large there may

be multiple routes whose length is similar to that of the optimal one. In this case not all

stations satisfying equation (5) are necessarily on the same route. To account for this we

weight transit commuters for a particular station by the fraction of possible routes passing by

this particular gas station. This corresponds to the assumption that consumers randomize

uniformly over routes. To calculate the weights we thus determine the number of potential

12



routes going from o to d satisfying equation (5), and check if a particular station is included

in all of these routes or only a selection of them. The details of the weighting scheme are

given in Appendix B. The results from this algorithm show that consumers indeed pass by

a substantial number of gas stations: The average (median) commuter passes by 20 (11) gas

stations, and 90% of commuters pass by at least two gas stations.

Using the methodology outlined above and imposing the strict separation of shoppers

and non-shoppers as suggested by theory, we construct the following measure for the total

number of informed consumers in the market of station i (Ii):

Ii = Cout
i + Cin

i + Ctr
i

We approximate the number of uninformed consumers on the market (Ui) with the number

of employed individuals who live in the municipality in which the station is located, and who

do not regularly commute over long distances by car.8

Having determined the number of uninformed consumers, we calculate a station-specific

proxy for the share of informed consumers in station i’s market µi:

µi =
Ii

Ui + Ii

Table 1 shows summary statistics on the share of informed consumer. The mean value

of our information measure lies close to the 60 percent mark. This skewness towards larger

values indicates that commuter flows account for a significant fraction of the gas stations’

potential customers.

In contrast to other empirical studies on the effects of information on price dispersion,

we observe large cross-sectional variation with the share of informed consumers ranging from

19 to 97 percent, thus covering a substantial range of feasible values. This significant spatial

8We follow this approach due to lack of better data, e.g. on passenger vehicle registrations at the munic-
ipality level. Given the localized character of competition and the assumed lack of mobility for uninformed
consumers, a more narrow definition of Ui would be preferable, especially for very large municipalities.
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variability in our measure of informed consumers allows us to examine the effects of infor-

mation on the most common measures of price dispersion. Only very low values of µ are not

part of our sample.

Table 1: Descriptive Statistics on the Share of Informed Consumers

Variable Mean Std. Dev. Min. Max.
µ 0.577 0.147 0.192 0.967

3.2 Diesel Prices and Stations

Our empirical analysis focuses on the retail diesel market in Austria. The retail diesel market

is particularly suitable for our purpose: Retail diesel is a fairly homogeneous product with the

main source of differentiation being spatial location, which is easily controlled for. Further,

consumers primarily frequent gas stations to purchase fuel, so that our analysis is less likely

to be confounded by consumers purchasing multiple products (see Hosken et al. (2008)).

We use quarterly data on diesel prices at the gas station level9 from October 1999 to

March 2005. Prices from each station were collected by the Austrian Chamber of Labor

(“Arbeiterkammer”) within three days in each time period, on weekdays. We merge the price

data with information on the geographical location of all 2,814 gas stations as well as their

characteristics: the number of pumps, whether the station has service bays, a convenience

store, etc.10 Retail prices are nominal and measured in Euro cents per litre, including fuel

tax (a per unit tax) and value added tax. In total, these taxes amount to about 55% of the

total diesel price. Unfortunately, the Austrian Chamber of Labor did not obtain prices for

all active gasoline stations in each quarter. As there is no systematic pattern with respect

to whether a particular station was sampled in a given year, we are not concerned with

selection issues. We will however control for unsampled competitors in a given market in the

9Unlike in North America, diesel-engined vehicles are most popular, accounting for more than 50% of
registered passenger vehicles in Austria in 2005 (Statistik Austria, 2006)

10The information on gas station characteristics have been collected by the company Experian Catalist in
August 2003, see http://www.catalist.com for company details.
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price-dispersion regressions.

To characterize the spatial distribution of suppliers and to measure distances between

gasoline stations we collect information about the structure of the road network. Using data

from ArcData Austria and the ArcGIS extension WIGeoNetwork, the geographical location

of the individual gas stations is linked to information on the Austrian road system.11 This

allows us to generate accurate measures of distance as well as the commuting behaviour

across the road network.

3.3 Measuring Price Dispersion

We now describe how we calculate measures of dispersion, the main variable we wish to

explain. Below we explain how we construct “residual” prices, define local markets, and the

various measures of price dispersion we employ.

Residual prices. Even though diesel fuel is homogeneous in terms of its physical charac-

teristics, gas stations differ not only in their locations, but also in terms of services provided

and other characteristics. Thus, a simple explanation for the observed existence of price

dispersion relies on heterogeneity. The challenge is to obtain a measure of price dispersion

after removing the main sources of heterogeneity. We follow the literature12 and obtain the

residuals of a price equation and interpret these residuals as the price of a homogeneous

product. To obtain “cleaned” prices we exploit the panel nature of our data following Lach

(2002) and run a two-way fixed effects panel regression of “raw” gasoline prices (prit) using

seller (ζi)- and time (χt)- fixed effects:

prit = α + ζi + χt + uit (6)

We focus on the residual variation, interpreting the residual price pit ≡ ûit as the price of

11We further supplement the individual data with demographic data (population density, ...) of the munici-
pality, where the gasoline station is located. This information is collected by the Austrian Statistical Office
(“Statistik Austria”).

12See e.g. Lach (2002), Barron et al. (2004), Bahadir-Lust et al. (2007), Hosken et al. (2008) or Lewis
(2008). Wildenbeest (2011) shows how to account for vertical differentiation.
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a homogeneous product after controlling for time-invariant store-specific effects and fluctua-

tions in prices common to all stores. We are aware of the risk of misspecification bias in this

regression. As Chandra and Tappata (2011) point out, the results are only valid if the fixed

station effects are additively separable from stations’ costs. We will therefore present results

for our key relationship of interest for both cleaned (p) and raw (pr) prices.

Local markets. In order to construct measures of price dispersion, we need to define

local markets. We do so by connecting each location to the Austrian road network and

defining a unique local market for each firm. The local market contains the location itself

and all rivals within a critical driving distance. Similar concepts have been applied when

studying retail gasoline markets (see for example Hastings (2004) and Chandra and Tappata

(2011)). We depart from the existing literature by using driving distance rather than linear

distance. Local markets are thus not characterized by circles, but by a delineated part of the

section network. We use a critical driving distance of two miles in our main specification.

In addition to delineating markets by (exogenously) chosen driving distances we also use

observed commuting patterns to define local markets: If the the share of common (potential)

consumers - which we denote as relative overlap (ROL) - for both stations exceeds a certain

threshold, two stations are considered to be in the same local market. A detailed description

of this procedure is provided in Appendix B.

Measures of price dispersion. To examine the impact of our measure of informed con-

sumers on price dispersion we need to summarize the price distribution in a (local) market

in a single metric. Several measures of price dispersion have been proposed in the literature.

We will first focus on the “value of information” (V OI, also known as “gains from search”).

This is a commonly used measure and the testable prediction in section 2 is based on this

metric. This measure has a very intuitive interpretation: it corresponds to a consumer’s

expected benefit of being informed. The value of information is defined as the difference

between the expected price and the expected minimum price in the market. If we denote

the local market around station i by mi, then the V OI for the market defined by station
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i is given by V OIi = E[pmi ] − E[pmimin].13 While the estimate of E[pmimin] is given by pmi(1)

(i.e. the first order statistic of prices sampled in market mi), there are two possibilities to

construct E[pmi ]. One is to use station i’s price as the expected price: E[pmi ] = pi and

V OIi = pi − pmimin. Another possibility is to follow Chandra and Tappata (2011) and use the

average local market price pmi , and therefore E[pmi ] = pmi and V OImi = pmi − pmimin. We

denote this measure by V OIM (M for “market”). In what follows, we apply both definitions

to calculate the value of information.

Another common measure of price dispersion is the sample range, defined as Ri = pmimax−

pmimin. As this measure is strongly influenced by outliers, we also use the Trimmed Range

TRi = pmi(N−1) − pmi(2), i.e. the difference between (N − 1)-th and second order statistic, as

a measure of price dispersion. The obvious disadvantage of the latter measure is that the

trimmed range TRi can only be constructed for local markets with at least four firms.

As the value of information, Range and Trimmed Range are based on extreme values

of the local price distribution, these measures depend heavily on the number of firms in

the local market: Even if the price distribution is not affected by the number of firms, the

expected values of these measures of price dispersion increase with the number of stations.

Measures that are less dependent on the number of firms compare the price of a station (or

of all stations) with the local market average, as done by the standard deviation. Similar as

with the V OI we can compare the price of a particular station i, or the prices of all stations

within a local market with the average (local) market price. In the first case this measure

equals the absolute difference between the price of station i and the average market price

(and thus ADi = |pi − pmi |), whereas in the latter case the standard deviation is defined

as SDmi
i =

√∑
i∈mi(pi − p

mi)2/(Nmi) with Nmi as the number of suppliers in station i’s

market mi (including station i).

Table 2 reports summary statistics for these measures of price dispersion for different

market delineations, namely two miles, using a 50% relative market overlap and administra-

13Note that all these measures are calculated for both raw and residual prices.
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tive boundaries (the municipality where the station is located). For each market delineation

the number of observations is reduced sharply when calculating the trimmed range, as the

sample is restricted to markets where the number of rival firms N c
o ≥ 3. The lowest values

of price dispersion are observed with the two-mile delineation. Price variability increases

if the market is identified using administrative boundaries and is even higher if a relative

overlap approach is used. The standard deviation (SD) is less dependent on different types

of market definitions, as expected. While raw prices are more dispersed than cleaned prices,

the difference is rather small.

Table 2: Descriptive Statistics on Measures of Price Dispersion

Local market delineation 2 Miles ROL 50% Municipality
Mean S.D. Mean S.D. Mean S.D.

Residual Prices
V OIM 0.725 (0.781) 0.874 (0.938) 0.847 (0.902)
V OI 0.723 (1.095) 0.874 (1.243) 0.847 (1.204)
Range 1.467 (1.526) 1.762 (1.783) 1.725 (1.771)
SDM 0.539 (0.546) 0.584 (0.564) 0.571 (0.556)
AD 0.466 (0.608) 0.499 (0.648) 0.486 (0.632)

Raw Prices
V OIM 0.747 (0.960) 0.946 (1.216) 0.900 (1.123)
V OI 0.749 (1.355) 0.946 (1.609) 0.900 (1.536)
Range 1.546 (2.028) 2.010 (2.538) 1.951 (2.513)
SDM 0.579 (0.736) 0.668 (0.812) 0.653 (0.819)
AD 0.498 (0.797) 0.560 (0.893) 0.548 (0.892)

# of obs. 14,851 13,980 14,037
Descriptive Statistics for Trimmed Range only:
Residual Prices
Trimmed Range 0.881 (0.921) 1.232 (1.164) 1.210 (1.149)

Raw Prices
Trimmed Range 0.879 (1.226) 1.279 (1.525) 1.255 (1.529)

# of obs. 7,996 7,840 7,895
Local markets are restricted to having a minimum of one rival firm with price information (N c

o ≥
1). For the trimmed range markets are restricted to three rival firms with price information
(N c

o ≥ 3).
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3.4 Descriptive Evidence

Before testing the key prediction in the next section, we validate our use of the clearinghouse

model in this subsection by means of descriptive evidence on how the share of informed

consumers affects the price level and evidence on intertemporal price variation.

Information and the price level

Recall that the clearinghouse model predicted that prices charged at a gas-station should

decrease with the share of informed consumers (Remark 1). Table 3 presents results of

regressing prices on our measure of the share of informed consumers µ. The first and second

column contain results using the entire sample, whereas the third and fourth (fifth and

sixth) column show results when restricting the sample to stations where prices of at least

one (three) rival firm(s) in the local market are available. All regressions are estimated using

either time fixed effects (first, third and fifth column) or the crude oil price index (second,

fourth and sixth column). The results remain nearly unchanged if the time fixed effects are

replaced by the crude oil price-index to capture the effects of cost shocks that are common

to all gasoline stations. As expected (and documented in the existing empirical literature

(Eckert, 2013)), crude oil prices exert a positive and highly significant impact on the level of

retail gasoline prices. In Table 4 we use stations’ average price levels (which correspond to

the station-level fixed effects ζi from the two-way fixed effects regression model in equation

(6)) instead of actual prices to investigate permanent price differences between firms. We

again find a negative effect of the share of informed consumers (µ). Note that the size and

the statistical significance of the parameter estimates are hardly affected when analyzing

stations’ average (rather than actual) prices. Our results suggest that a larger share of

informed consumers reduces market prices in line with Remark 1 in Section 2. Going from

zero informed consumers to all consumers being informed would reduce prices by about 2

cents.
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Table 3: Regression results on price levels (delineation: 2 miles)

Dependent variable: Full sample Markets with Markets with
Price level (diesel) at least 2 stations at least 4 stations

(1) (2) (3) (4) (5) (6)
µ -1.862∗∗∗ -2.742∗∗∗ -1.576∗∗∗ -2.392∗∗∗ -1.594∗∗∗ -2.673∗∗∗

(0.315) (0.329) (0.373) (0.393) (0.519) (0.520)

# of rival firms (N c) -0.012 -0.018∗∗ -0.008 -0.016∗ -0.013 -0.024∗∗

(0.009) (0.009) (0.009) (0.010) (0.009) (0.010)

Time fixed effects Yes No Yes No Yes No

Brent price in euro 0.220∗∗∗ 0.221∗∗∗ 0.224∗∗∗

(0.006) (0.007) (0.011)

Constant 73.084∗∗∗ 74.095∗∗∗ 72.988∗∗∗ 74.151∗∗∗ 72.623∗∗∗ 74.197∗∗∗

(0.369) (0.413) (0.458) (0.498) (0.594) (0.642)
# of obs. 21,905 21,905 14,851 14,851 7,996 7,996
R2 0.804 0.171 0.805 0.166 0.809 0.166

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and random station effects,
as well as dummy variables for missing exogenous variables. Models (1), (3) and (5) include fixed time
effects. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10%
(∗) level.

Table 4: Regression results on stations’ average price levels (delineation: 2 miles)

Dependent variable: Full sample Markets with Markets with
Average price over at least 2 firms at least 4 firms
all periods (7) (8) (9)
µ -2.264∗∗∗ -1.814∗∗∗ -2.005∗∗∗

(0.350) (0.422) (0.593)

# of rival firms (N c) -0.015∗ -0.008 -0.011
(0.009) (0.009) (0.011)

Constant -1.473∗∗∗ -1.375∗∗∗ -1.053∗

(0.390) (0.492) (0.610)
# of obs. 1,513 1,015 570
R2 0.543 0.572 0.636

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state effects as
well as dummy variables for missing exogenous variables. Average price level of
station i is the station fixed effect ζi from equation (6). Inference of the parameter
estimates is based on robust (heteroscedasticity consistent) standard errors (White,
1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10%
(∗) level.

20



Intemporal price variation

One question that arises is whether price dispersion is caused by permanent price differences

across firms, or whether firms indeed employ mixed strategies. We follow Chandra and

Tappata (2011) and calculate a measure of rank reversals rrij for each pair of stations i and

j (provided that i and j are located in the same local market and that we can observe the

prices of both stations for at least two time periods). Let Tij denote the number of periods

where price information is available for both firms. Subscripts i and j are assigned to the

two stations so that pit ≥ pjt for most time periods. The measure of rank reversals is defined

as the proportion of observations with pjt > pit:

rrij =
1

Tij

Tij∑
t=1

I{pjt>pit},

Our results are in line with Chandra and Tappata (2011). When using raw prices, the

station that is cheaper most of the time charges higher prices in 10.5% of all time periods.

Our measure of rank reversals increases to 21.5% when analyzing cleaned prices instead of

actual prices, suggesting that firms are indeed mixing.

4 Testing the Relationship between Information and

Price Dispersion

In this section we apply both parametric and non-parametric techniques to investigate

whether the inverted-U relationship between information and price dispersion that we derived

in Section 2 for the clearinghouse model is supported by the data for the gasoline market.

A straightforward approach to test for an inverse-U relationship between price dispersion

PDit and the share of informed consumers (µi) in station i’s market is to estimate the
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following linear regression model:

PDit = α + βµi + γµ2
i +Xitθ + ηit,

where Xit represents possible confounding factors at the station level as well as over time.

More specifically, we control for station-specific characteristics (such as brand name, avail-

ability of service bay and/or convenience store, car wash facility, location) and region-specific

characteristics (such as population density, traffic exposure of the station), as well as mea-

sures characterizing the competitive environment (number of rivals in the market). Further,

period fixed effects are included to remove price fluctuations that are common to all gasoline

stations.

The main parameters of interest are β and γ. An inverted U-shaped relationship between

price dispersion and information, as predicted in Proposition 1, would imply that β > 0

and γ < 0. According to the parameter estimates reported in Table 5, this proposition is

supported by the data in all specifications. While the size of the estimated coefficients varies

between the models, the parameter estimates for β (γ) are positive (negative) and statistically

significant at the 1%-significance level in all specifications based on the residual prices after

controlling for other confounding factors. As the share of informed consumers increases, price

dispersion first increases and then starts decreasing once the share of informed consumers

exceeds a critical level. The critical level implied by the parameter estimates lies between

between 0.70 and 0.76. As the share of informed consumers exceeds this level, the majority

of the stations attempts to capture the informed portion of the market, which reduces price

dispersion.

To formally test for the presence of an inverted U-shaped relationship between information

and price dispersion, we apply the statistical test suggested in Lind and Mehlum (2010).14

This test calculates the slope of the estimation equation at both ends of the distribution of

14Lind and Mehlum (2010) argue that while a positive linear and a negative quadratic term supports a
concave relationship between two variables, it is not sufficient to guarantee an inverted-U shaped relationship
since the relationship may be concave but still monotone in the relevant range.
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Table 5: Regression results using residual prices to calculate dispersion and a market delineation of 2 miles

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µ 1.705∗∗∗ 1.709∗∗∗ 2.994∗∗∗ 4.192∗∗∗ 0.913∗∗∗ 0.851∗∗∗

(0.300) (0.460) (0.586) (0.555) (0.237) (0.264)

µ2 -1.210∗∗∗ -1.182∗∗∗ -2.046∗∗∗ -2.971∗∗∗ -0.600∗∗∗ -0.594∗∗∗

(0.249) (0.388) (0.489) (0.460) (0.200) (0.225)

# of rival firms with prices (N c
o) 0.064∗∗∗ 0.065∗∗∗ 0.122∗∗∗ 0.060∗∗∗ 0.018∗∗∗ 0.007∗∗∗

(0.004) (0.005) (0.006) (0.004) (0.002) (0.003)

# of rival firms (N c) 0.004∗ 0.005 0.016∗∗∗ 0.024∗∗∗ 0.005∗∗∗ 0.004∗∗

(0.002) (0.004) (0.004) (0.003) (0.001) (0.002)

Constant -0.575∗∗∗ -0.605∗∗∗ -1.075∗∗∗ -1.616∗∗∗ -0.232∗∗∗ -0.095
(0.109) (0.173) (0.221) (0.220) (0.088) (0.101)

Lower bound 0.214 0.214 0.214 0.329 0.214 0.214
Slope at lower bound 1.186 1.203 2.118 2.240 0.656 0.597
t 6.070 4.047 5.558 8.564 4.292 3.515
p 0.000 0.000 0.000 0.000 0.000 0.000
Upper bound 0.967 0.967 0.967 0.967 0.967 0.967
Slope at upper bound -0.637 -0.578 -0.965 -1.556 -0.247 -0.299
t -3.320 -1.881 -2.553 -4.393 -1.567 -1.661
p 0.001 0.030 0.005 0.000 0.059 0.048
Overall inverse-U test
t 3.32 1.88 2.55 4.39 1.57 1.66
p 0.001 0.030 0.005 0.000 0.059 0.048

Extreme (µ̂ = −β̂/2γ̂) 0.704 0.723 0.732 0.706 0.761 0.716
# of obs. 14,851 14,851 14,851 7,996 14,851 14,851
R2 0.260 0.136 0.280 0.370 0.172 0.104

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10% (∗) level.
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the explanatory variable (µ). A positive slope for low values of the information measure and

a negative slope after a certain threshold (µ̄) would imply an inverted U-shaped relationship

between information and price dispersion. The test is an intersection-union test as the null

hypothesis is that the parameter vector is contained in a union of specified sets. Results are

reported in Table 5. At the lower bound of our set of observations, the slope is positive and

significantly different from zero at the 1% level for all measures of price dispersion used. At

the upper bound the slope is negative in all specifications. The slope is significantly different

from zero at the 1% level for the V OIM , Range, and the Trimmed Range measures, at the

5% level for the V OI and AD measures, and at the 10% level for the SD measure.

The regression results explaining price dispersion based on raw rather than residual prices

are summarized in Table 6. The qualitative results hardly change when using raw instead

of cleaned prices: The estimates of µ are positive and statistically significant in all model

specifications, while the parameter estimates on µ2 are negative for all measures of price

dispersion and statistically significant at the 5%-level (at the 10%-level) in five out of six

(in all) models. Although the parameters are not estimated with the same level of precision

as with cleaned prices, the null hypothesis of no inverse U shape is rejected at common

significance levels in four out of six specifications.

The empirical findings using a local market definition based on commuting patterns are

even more convincing: When using a threshold-ROL of 50% to delineate local markets

the parameter estimates of µ (µ2) are positive (negative) and statistically significant, and

the intersection-union test is rejected at a 1%-significance level for all measures of price

dispersion. These results are summarized in Table 7.

When comparing the magnitude of our estimates of µ and µ2 across the models we find

that the (absolute values of the) parameters are largest for Range and Trimmed Range and

lowest for SD and AD. This is due to the fact that Range and Trimmed Range are more

dispersed than SD and AD, as the first two measures (and, to a lesser extent, V OIM and

V OI) will be more affected by extreme values in the local price distribution.
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Table 6: Regression results using raw prices to calculate dispersion and a market delineation of 2 miles

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µ 1.325∗∗∗ 1.811∗∗∗ 2.264∗∗∗ 5.973∗∗∗ 0.806∗∗ 0.992∗∗∗

(0.382) (0.541) (0.796) (0.746) (0.323) (0.341)

µ2 -0.885∗∗∗ -1.211∗∗∗ -1.422∗∗ -4.370∗∗∗ -0.504∗ -0.692∗∗

(0.320) (0.462) (0.665) (0.621) (0.274) (0.290)

# of rival firms with prices (N c
o) 0.011∗∗∗ 0.010∗ 0.126∗∗∗ 0.066∗∗∗ 0.016∗∗∗ 0.003

(0.004) (0.006) (0.009) (0.006) (0.003) (0.003)

# of rival firms (N c) 0.046∗∗∗ 0.050∗∗∗ 0.031∗∗∗ 0.039∗∗∗ 0.012∗∗∗ 0.011∗∗∗

(0.003) (0.004) (0.006) (0.004) (0.002) (0.003)

Constant -0.767∗∗∗ -1.697∗∗∗ -1.669∗∗∗ -2.813∗∗∗ -0.474∗∗∗ -0.420∗∗∗

(0.136) (0.205) (0.299) (0.292) (0.119) (0.133)
Overall inverse-U test
t 1.55 1.43 0.94 5.18 0.78 1.50
p 0.061 0.076 0.172 0.000 0.219 0.067

Extremum (µ̂ = −β̂/2γ̂) 0.749 0.748 0.796 0.683 0.800 0.716
# of obs. 14,851 14,851 14,851 7,996 14,851 14,851
R2 0.238 0.160 0.270 0.373 0.178 0.131

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10% (∗) level.
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Table 7: Regression results using residual prices to calculate dispersion and a market delineation of 50% relative overlap

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µ 3.363∗∗∗ 3.154∗∗∗ 5.575∗∗∗ 8.499∗∗∗ 1.301∗∗∗ 1.344∗∗∗

(0.411) (0.602) (0.768) (0.862) (0.305) (0.357)

µ2 -2.739∗∗∗ -2.614∗∗∗ -4.517∗∗∗ -6.881∗∗∗ -1.073∗∗∗ -0.997∗∗∗

(0.343) (0.507) (0.648) (0.768) (0.257) (0.298)

# of rival firms with prices (N c
o) 0.044∗∗∗ 0.043∗∗∗ 0.090∗∗∗ 0.056∗∗∗ 0.010∗∗∗ 0.005∗∗∗

(0.002) (0.003) (0.004) (0.002) (0.001) (0.001)

# of rival firms (N c) 0.005∗∗∗ 0.004∗∗∗ 0.007∗∗∗ 0.012∗∗∗ 0.001∗∗∗ 0.001
(0.001) (0.001) (0.002) (0.001) (0.000) (0.001)

Constant -0.599∗∗∗ -0.538∗∗ -0.979∗∗∗ -3.087∗∗∗ -0.060 -0.039
(0.143) (0.213) (0.272) (0.282) (0.106) (0.128)

Overall inverse-U test
t 7.20 4.71 6.14 7.25 3.79 2.45
p 0.000 0.000 0.000 0.000 0.000 0.007

Extreme (µ̂ = −β̂/2γ̂) 0.614 0.603 0.617 0.618 0.607 0.674
# of obs. 13,980 13,980 13,980 7,840 13,980 13,980
R2 0.335 0.194 0.378 0.543 0.169 0.097

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10% (∗) level.
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The inverted-U shaped relationship between our measures of informed consumers and

price dispersion suggests that price dispersion is significantly smaller in markets where firms

have mainly either informed or uninformed consumers. For markets with an intermediate

information endowment of consumers, our findings clearly reject the “law of one price”. We

next examine the sensitivity of our results regarding spatial correlation and parametric restric-

tions,15 and provide several robustness checks regarding market definition and construction

of our information measure.

Accounting for Spatial Correlation

So far we have treated all observations as independent from each other. However, the mea-

sures of price dispersion are calculated by comparing the price of a particular gas station

with prices charged by other stations in the local market, which challenges the assumption

that observations are independent. A natural approach to tackle this issue is to cluster the

residuals at the local market level. This approach, however, is not feasible in our case of

overlapping markets. Another way to account for contemporaneous correlation of the resid-

uals ηit within local markets is to allow for a spatially autoregressive process (see Anselin

(1988) for an overview). We thus obtain an estimate of the variance-covariance matrix of

the residuals, V Cη accounting for spatial correlation. We assume that the residual vector η

takes the form η = λWη + ν, where λ is the spatial autocorrelation parameter, the matrix

W describes the structure of spatial dependence, and ν is the remaining error vector. The

matrix W is constructed as follows. The variable w∗it,js is equal to one whenever i and j

are in the same local market, i 6= j and t = s, and zero otherwise.16 The matrix W is

15We will not formally test for an inverse-U shape as we are not aware of a test in the spirit of Lind
and Mehlum (2010) in the presence of spatial correlation. Recently, Kostyshak (2015) suggested a critical
bandwidth based approach in non-parametric regression.

16One caveat of this method is that the structure of the matrix V Cη is (partly) determined by the
weights matrix W that has to be (exogenously) specified by the researcher. When constructing the weights
matrix we use the same approach as when calculating the measures of price dispersion, namely that only
contemporaneous observations are considered and that all rival firms in the local market get the same weight
(irrespective of their exact location relative to the central station of the respective local market).
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Table 8: Regression results using residual prices to calculate dispersion and a market delineation of 2 miles accounting for spatial
autocorrelation in the residuals

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µ 1.792 ∗∗∗ 1.811 ∗∗∗ 3.181 ∗∗∗ 4.095 ∗∗∗ 1.027 ∗∗ 0.911 ∗∗

(0.505) (0.504) (1.043) (0.552) (0.408) (0.359)

µ2 -1.259 ∗∗∗ -1.247 ∗∗∗ -2.156 ∗∗ -2.902 ∗∗∗ -0.672 ∗∗ -0.619 ∗∗

(0.417) (0.424) (0.859) (0.451) (0.340) (0.299)

# of rival firms with prices (N c
o) 0.063 ∗∗∗ 0.065 ∗∗∗ 0.121 ∗∗∗ 0.060 ∗∗∗ 0.018 ∗∗∗ 0.007

(0.007) (0.006) (0.013) (0.005) (0.004) (0.004)

# of rival firms (N c) 0.005 0.006 0.017 ∗ 0.024 ∗∗∗ 0.006 ∗∗ 0.005 ∗

(0.005) (0.004) (0.010) (0.003) (0.003) (0.003)

Constant -0.577 ∗∗∗ -0.605 ∗∗∗ -1.081 ∗∗∗ -2.153 ∗∗∗ -0.244 -0.070
(0.186) (0.188) (0.398) (0.212) (0.157) (0.135)

λ 0.803 ∗∗∗ 0.143 ∗∗∗ 0.843 ∗∗∗ 0.789 ∗∗∗ 0.855 ∗∗∗ 0.520 ∗∗∗

(0.004) (0.008) (0.004) (0.005) (0.004) (0.009)

Extreme (µ̂ = −β̂/2γ̂) 0.712 0.726 0.738 0.706 0.764 0.736
# of obs. 14,634 14,634 14,634 7,927 14,634 14,634
R2 0.264 0.140 0.285 0.371 0.174 0.105

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on a variance-covariance matrix of the residuals that
accounts for a spatially autoregressive process in the residuals and is based on a robust (heteroscedasticity consistent) estimator of
variance of the remaining error (White, 1980). ρ is estimated using GMM based on residuals of OLS regression. Asterisks denote
statistical significance in a t-test at 1% (***), 5% (**) or 10% (*) level.
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row-normalized with typical element wit,js =
w∗it,js∑
j w
∗
it,jt

.17 The variance-covariance matrix of

η becomes V Cη(λ) = (I − λW )−1 Σν (I − λW ′)
−1

, where Σν is the variance-covariance

matrix of the remaining error νit.

We apply a GMM-procedure based on the OLS residuals to obtain a consistent estimate

of the spatial autocorrelation parameter λ as described in Kelejian and Prucha (1999) and

adjust the variance-covariance matrix as described above.18 The results are reported in Table

8. The parameter estimates are negligibly affected as the sample size is slightly smaller.19

While the size of the standard errors of the parameter estimates increases by a small amount,

the interpretation of the results remains unaffected: The parameter estimates of the linear

and quadratic terms of µ take the expected signs and are statistically different from zero (at

least) at the 5%-significance level, and the implied critical level lies between 0.70 and 0.76.

Semi-Parametric Evidence

In this section we illustrate that the estimated relationship between information and price

dispersion is not driven by the parametric restriction to a linear quadratic function. Given the

large number of controls, we follow a semi-parametric approach: We still restrict attention

to a linear specification for the vector of controls, but we do not impose any parametric

restrictions on the relationship between our measures of price dispersion and information µ.

We estimate the following equation semi-parametrically:

PDit = α + f(µi) +Xitθ + ηit, (7)

17Row-normalization is commonly used when specifying spatially autocorrelated residuals. It facilitates
interpretation as

∑
j wit,jtηjt is the (spatially weighted) average of residuals of other stations located in the

same local market as station i, and it ensures that I − λW is non-singular as long as λ ∈ (−1, 1). See Bell
and Bockstael (2000) for a discussion.

18We allow for heteroskedasticity of unknown form in the remaining error νit as suggested by White (1980).
19The sample size is slightly reduced when we account for the spatial dependance structure in the residuals

as we exclude stations that are located in a market with no other stations in the sample (to enable row-
normalization of W ). This can occur as we exclude stations located in Vienna in the entire analysis. So if
a station has only rival stations in the local market that are located in Vienna we can calculate the value
of price dispersion for this station (and include this observation in the specifications above) but exclude this
observation here.
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We use the two-step procedure proposed by Robinson (1988) to obtain an estimate f̂(·).

We first obtain non-parametric estimates of E(PD|µ) and E(X|µ) and then regress PD −

E(PD|µ) on X −E(X|µ) to obtain a consistent estimate of θ. We then regress E(PD|µ)−

E(X|µ)θ̂ on µ non-parametrically to obtain an estimate of f(.). Figure 2 reports results

obtained for the non-parametric component of regression equation (7) with a kernel-weighted

local polynomial regression.20 We see that the restriction to a linear quadratic function

resulted in a peak further to the right than with a flexible functional form. Although the

specific form of the relationship between price dispersion (shown on the vertical axis) and

different measures of consumers’ information (on the horizontal axis) differ across the measure

of price dispersion, there is strong evidence in favor of an inverted U shape of the relationship

of interest.

Figure 2: Semi-parametric evidence
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The image is based on an Epanechnikov kernel with a polynomial smooth degree of 0
and 0.8 bandwidth. The pilot bandwidth for the standard error calculation is 0.12.

20The results of directly regressing price dispersion non-parametrically on µ, i.e. not controlling for X, are
actually quite similar. They are available from the authors upon request.
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Robustness

In order to confirm that our results are driven neither by the specific product, nor by the

way we delineate local markets, nor by particular sub-samples, nor by the approach used

to calculate the measure of information endowment µ, we have run regressions using per-

turbations of these definitions. Results from these estimation experiments are summarized

in Appendix C (available online) in Tables 9 to 23 along with a detailed description of the

model alterations and a more thorough discussion of the results.

First, we perform the same regressions using regular gasoline instead of diesel. Second,

we define local markets using administrative boundaries (municipalities) and a smaller crit-

ical distance (1.5 miles instead of 2 miles). When using commuting patterns to define local

markets, we use different critical shares of common (potential) consumers (threshold-ROL)

to decide whether two stations are in the same local market. Third, we analyze alternative

samples by excluding larger municipalities as well as stations located on highways, by includ-

ing gasoline stations located in Vienna, and by restricting attention to local markets with

at least three gasoline stations. Last, we use alternative ways to calculate our measure of

information endowment µ: (i) We do not weight commuter flows by the share of possible

routes passing by a particular gas stations.21 (ii) We consider different levels of informedness,

based on the number of stations sampled by each commuter relative to the total number of

stations in a local market, instead of assuming that commuters are perfectly informed about

all prices. (iii) We account for the fact that long distance commuters (might) pass through

many local markets and therefore pass by a larger number of gasoline stations. As commuters

passing by many gasoline stations are less likely to be attracted, these commuter flows receive

lower weights when calculating this alternative measure of information endowment. (iv) The

final alteration consists in using different values for the critical distance dist when assigning

commuter flows to gasoline stations.

The main result of our analysis - an inverted-U-shaped relationship between consumers’

21For each commuter flow from o to d we therefore assign weights ωi,od = 1 if station i complies with
equation (5).

31



information endowment and price dispersion - remains unaffected by these modifications.

5 Conclusions

We have shown that clearinghouse models generate an inverted U relationship between price

dispersion and the share of informed consumers. Past studies have relied on internet usage or

on a comparison of online and offline markets to examine the effect of consumer information

on prices. Using the fact that commuters can freely sample prices at gas stations along their

commuting path, we have provided a novel measure of the share of informed consumers in

the market for retail gasoline. We have found robust statistical evidence supporting the

information mechanism in clearinghouse models. We have also found that an increase in the

share of informed consumers lowers market prices. This latter result may be related to the

fact that, contrary to measures based on internet usage or adoption, our measure of consumer

information is unlikely to be related to how easy it is for firms to monitor each others’ prices

in a collusive setting.
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Appendix A. Proofs

Lemma 1. For all µ ∈ (0, 1) and N ≥ 2, let A(µ) =
∫ 1

0
dz

1+ µ
1−µNz

N−1 . Then, µ ∈ (0, 1) 7→
A(µ)

1−A(µ)
− 1−µ

µ
is strictly decreasing.

Proof. For all x > 0 and N ≥ 2, let B(x) =
∫ 1

0
dz

1+xNzN−1 , and notice that B(x) ∈
(

1
1+xN

, 1
)
.

Then, A(µ) = B
(

µ
1−µ

)
for all µ ∈ (0, 1). Since µ

1−µ is strictly increasing in µ, it follows that

A(µ)
1−A(µ)

− 1−µ
µ

is strictly decreasing in µ on (0, 1) if and only if g(x) = B(x)
1−B(x)

− 1
x

is strictly

decreasing in x on (0,∞).
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Notice that for all x > 0,

B′(x) = −
∫ 1

0

NzN−1

(1 + xNzN−1)2dz,

=
1

x(N − 1)

(
1

1 + xN
−B(x)

)
, (8)

where the second line is obtained by integrating by part. Therefore, if we define

φ(y, x) =
1

x(N − 1)

(
1

1 + xN
− y
)
,

then B is a solution of differential equation y′ = φ(y, x) on interval (0,∞).

For all x > 0, g′(x) = B′(x)
(1−B(x))2

+ 1
x2

. Using equation (8), we see that g′(x) is strictly

negative if and only if Px(B(x)) < 0, where

Px(Y ) = x (1− Y (1 + xN)) + (1− Y )2(N − 1)(1 + xN) ∀Y ∈ R.

Px(.) is strictly convex, and Px (1) < 0 < Px
(

1
1+xN

)
. Therefore, there exists a unique

Γ(x) ∈
(

1
1+xN

, 1
)

such that Px(.) is strictly positive on
(

1
1+xN

,Γ(x)
)

and strictly negative on

(Γ(x), 1). Γ(x) is given by

Γ(x) = 1 +
x

2(N − 1)

(
1−

√
1 +

4N(N − 1)

1 + xN

)
.

Since B(x) ∈
(

1
1+xN

, 1
)
, it follows that g′(x) < 0 if and only if B(x) > Γ(x).

Next, let us show that B(x) > Γ(x) when x is in the neighborhood of 0, x > 0. Applying

Taylor’s theorem to Γ(x) for x→ 0+, we get:

Γ(x) = 1− x+
2N2

2N − 1

x2

2
− 6N3(1− 3N + 3N2)

(2N − 1)3

x3

6
+ o(x3),

where o(x3) is Landau’s small-o. Differentiating B three times under the integral sign and
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applying Taylor’s theorem for x→ 0+, we get:

B(x) = 1− x+
2N2

2N − 1

x2

2
− 6N3

3N − 2

x3

6
+ o(x3).

It follows that

B(x)− Γ(x) = x3

(
N3 17N3 − 27N2 + 15N − 3

(2N − 1)3(3N − 2)
+ o(1)

)
.

Since N3 17N3−27N2+15N−3
(2N−1)3(3N−2)

> 0 for all N ≥ 2, there exists x0 > 0 such that B(x) − Γ(x) > 0

for all x ∈ (0, x0].

Next, we show that B(x) − Γ(x) > 0 for all x > x0. We will establish this by showing

that Γ is a subsolution of differential equation y′ = φ(y, x) on [x0,∞). Γ is a subsolution of

this differential equation if and only if Γ′(x) < φ(Γ(x), x) for all x ≥ x0. Γ′(x) − φ(Γ(x), x)

is given by

N

√
(1 +Nx)(1 + 4N(N − 1) +Nx) ((x+ 2)N − 1)− (1 + 4N(N − 1) + 2N3x+N2x2)

2(N − 1)2(1 +Nx)
√

(1 +Nx)(1 + 4N(N − 1) +Nx)
.

The above expression is strictly negative if and only if

(1 +Nx)(1 + 4N(N − 1) +Nx) ((x+ 2)N − 1)2 −
(
1 + 4N(N − 1) + 2N3x+N2x2

)2
< 0.

The left-hand side is in fact equal to −4N2(N − 1)4x2, which is indeed strictly negative.

We can conclude: B is a solution of differential equation y′ = φ(y, x) on [x0,∞), Γ is a

subsolution of the same differential equation, and B(x0) > Γ(x0); by Lemma 1.2 in Teschl

(2012), B(x) > Γ(x) for all x > x0.
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Appendix B. Constructing Variables

Weighting commuter flows. To calculate the number of potential routes we have to identify

which stations are on the same route. Two stations i and j that comply with equation (5)

are on one route from o to d if the optimal route between the two municipalities which passes

through both stations is not excessively longer than the optimal route from o to d passing

through one station only. The stations are ordered based on their distance from the origin.

This implies that in the equation below, the indexes i and j are assigned to these stations so

that doi ≤ doj. Both stations are on the same route if

distoi + distij + distjd −min (distoi + distid, distoj + distjd) < dist (9)

with distij as the optimal route between these two stations. Multiple stations are on the same

route if all pairs of stations comply with equation (9). If, for a particular commuter flow at

least one station complies with equation (5) then each potential route contains at least one

station.22 Two potential routes between o and d are viewed as separate if at least one station

located on one route is not included in the other (and vice versa). The weight of a commuter

flow from o to d assigned to station i, ωi,od, equals the share of potential routes that include

station i (and equals zero if i does not comply with equation (5)). More formally, let Rod

be the set of potential routes for a commuter flow from o to d. A potential route for this

commuter flow Rod ∈ Rod, can be fully described by enumerating all the gas stations that

this commuter flow will pass along this route. The respective weight of the commuter flow

from o to d for station i, ωi,od, can be characterized as:

ωi,od =
1

|Rod|
∑

Rod∈Rod

1i∈Rod

Note that this shortest path algorithm is applied to transit commuters only, therefore

22We do not consider routes without stations when calculating these weights.
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ωi,od = 1 if station i is located in either municipality o or d. The aggregated weighted number

of commuters for station i is given by Ii =
∑

o

∑
d6=o ωi,odCod, with Cod as the commuter flow

from o to d.

Market definition based on commuting patterns. In addition to delineating local markets

by (exogenously) chosen driving distances or by administrative boundaries, we determine

whether two stations are considered to be in the same market by means of the share of

common (potential) consumers, which we denote as relative overlap (ROL). Two stations

are considered to be within one local market if the share of common (potential) consumers

for both stations exceeds a certain threshold. Non-commuters are considered to be potential

consumers for two stations if both firms are located in the same municipality. A commuter

flow between o and d is considered to indicate potential consumers for both firms if the

commuter flow passes by both stations, i.e. both firms comply with equation (5). The

relative overlap between two stations i and j is defined as:

ROLij =
Consi ∧ Consj
Consi ∨ Consj

with Consi (Consj) as the number of potential consumers - including both commuters and

non-commuters - of station i (j). We again construct a local market for each station: Station

i’s market contains station i itself and all other stations j 6= i as long as ROLij exceeds a

particular critical value.
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Appendix C. Further Sensitivity Analysis

For Online Publication Only

In this Online-Appendix we show the robustness of the findings reported in the main part

of the article by altering the model specification in various dimensions, namely (i) by using

regular gasoline instead of diesel, (ii) by the way we delineate local markets, (iii) by analyzing

alternative samples and (iv) by applying different definitions to calculate the share of informed

consumers µ.

Regular Gasoline (Table 9)

In the main text we focused on diesel as this is the most important fuel for cars in Austria.

The regression results using regular (unleaded) gasoline instead of diesel are reported in Table

9. The parameter estimates of µ (µ2) are positive (negative) in all model specifications and

statistically significant at the 5%-significance level in all model specifications. As with diesel,

we find the expected concave relationship in almost all model specifications when using

regular gasoline. The intersection-union test of Lind and Mehlum (2010) is rejected at the

5%- (10%) significance level in four (five) out of six model specifications. While we find

strong statistical evidence for an upward-sloping relationship between price dispersion and

information endowment at low levels of µ, the downward-sloping relationship at high levels

of µ is not significantly negative in all specifications.

Local Market Delineation (Table 10 – 13)

As using a particular distance to delineate markets is rather arbitrary we use administra-

tive boundaries (municipalities) and a different critical distance (1.5 instead of 2 miles) to

define local markets. The results on these alterations are reported in Table 10 and 11. In all

(all but one) model specifications the parameter estimates of µ (µ2) are positive (negative)

and statistically different from zero at the 5%-significance level. The intersection-union test

of Lind and Mehlum (2010) is rejected at the 5%-significance level for all measures of price
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dispersion when market delineation is based on municipality boundaries, but only in three

(out of six) specifications when markets are defined using a critical distance of 1.5 miles.

In those model specifications where the test fails to reject the null-hypothesis the peak of

the inverse-U appears rather late (at values of µ of about 0.75), resulting in the downward-

sloping part at high levels of µ not being statistically significant anymore. Nevertheless, the

concave relationship between information endowment and price dispersion is supported by

virtually all model specifications, while the inverse-U relationship is endorsed by 9 out of 12

specifications.

When using a market definition based on commuting patterns in the main part of this

article we take a critical relative overlap (ROL) of potential consumers of 50% to define

whether two stations belong to the same local market. As a robustness exercise we use

different threshold levels of 10% (summarized in Table 12) and 90% (reported in Table 13).

As in the main part of this article (see Table 7) the parameter estimates of µ (µ2) are positive

(negative) and statistically different from zero at the 1%-significance level for each measure

of price dispersion. Additionally, the intersection-union test is rejected at the 1%-significance

level in any specification, endorsing the interpretation of an inverse-U relationship between

information endowment and price dispersion.

Alternative Samples (Table 14 – 17)

For the model specifications summarized in Table 14 we exclude all stations located in

the three largest towns (besides Vienna) of Austria, namely Graz, Linz and Salzburg, leaving

only firms located in municipalities with less than 120,000 inhabitants in the sample. We do

so as our measure of information is based on commuter flows at a municipality level, which is

less precise in very large towns. Alternatively, we exclude all stations located on highways, as

competition between firms on and off highways can be expected to be lower than suggested

by the distance between these competitors.23 Evaluating these subsamples hardly affects the

23Note that this problem is mitigated as we use driving distance. Even if the linear distance between one
station on and one station off the highway is small, they are not considered to be in the same local market
if there is no exit close-by.
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results, as reported in Table 14 and Table 15: the parameter estimates of µ and µ2 take the

expected signs and are significantly different from zero at the 1%-significance level for all

measures of price dispersion and for both subsamples. Additionally, the intersection-union

test is rejected (at least) at the 5%-level in each specification.

We exclude stations located in Vienna throughout the analysis, as Vienna has more than

1.5 million inhabitants and is therefore more than six times as large as the second biggest city.

Our data on commuting behavior within Vienna is therefore only a rough guess. However,

including Vienna does not change the main findings: The parameter estimates of µ and

µ2 always take the expected sign and for all measures of dispersion (except the absolute

distance (AD)) the parameter estimates of these variables are also significantly different

from zero. The intersection-union test, however, is rejected only once (twice) at the 1%-

(10%-) significance level. These results are reported in Table 16.

We also follow Chandra and Tappata (2011) and restrict our sample to stations in local

markets with three or more firms only (i.e. to stations with at least two competitors where

prices are observed in the particular period). These results are summarized in Table 17:

Both the sign and the statistical significance of the parameter estimates of µ and µ2 as well

as the intersection-union test support our main findings, i.e. that the relationship between

price dispersion and the share of informed consumers is characterized by an inverse-U.

Alternative Ways to Calculate µ (Table 18 – 23)

In the last class of sensitivity analysis we provide alternative ways of constructing µ. In

the first alteration we refrain from weighting the commuter flows by the number of potential

routes when calculating the share of informed consumers µ. Technically, all transit commuters

are weighted by ωi,od = 1 if station i complies with equation (5). Again, as summarized in

Table 18, the parameter estimates of µ and µ2 take the expected signs and are statistically

significant at the 1%-significance level for each measure of price dispersion. The intersection-

union test again supports the main finding of this article, namely that consumers’ information

endowment and price dispersion are characterized by an inverted-U shaped relationship.
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The second alteration in calculating µ deviates from the notion of all commuters being

perfectly informed about all prices and assigns different “degrees of informedness” τ to long-

distance commuters. The degree of informedness depends on the number of stations sampled

by each commuter flow in relation to the number of competitors in the local market. The

respective measure of information endowment µdegreei is calculated as

µdegreei =
Uiτ

U
i +

∑
o

∑
d6=o ωi,odCodτ

I
i,od

Ui + Ii

with Ii =
∑

o

∑
d6=o ωi,odCod as the weighted number of commuters for station i. ωi,od denotes

the probability of the commuter flow traveling from o to d to pass by station i, as described in

section Appendix B. Additionally, each commuter flow is weighted by the degree of informed-

ness for the respective station i, τ Ii,od, depending on the average number of stations the com-

muters drive past on their way to work and on the total number of stations in the local market.

Let δi,od = min(average # of stations observed by the commuter flow Cod, N
mi), then the

degree of informedness of a particular commuter flow τ Ii,od is defined as τ Ii,od =
δi,od
Nmi
∈ [ 1

Nmi
, 1],

allowing for the information endowment of commuters to be “less than perfect” (i.e. τ Ii,od < 1).

Following Varian (1980)’s and Stahl (1989)’s search models claiming that the non-shoppers

Ui are completely uninformed, we assign τUi = 0.

The regression results using the variable µdegree, based on different degrees of informedness,

are summarized in Table 19. For all measures of price dispersion the parameter estimates

on the linear and the quadratic term of µdegree take the expected signs and are significantly

different from zero at the 1%-significance level. Additionally, the intersection-union test

is rejected at the 1%-significance level for each measure of price dispersion, suggesting an

inverted-U shaped relationship between price dispersion and information endowment.

In an alternative model specification reported in Table 20, we assume that non-commuters

have information on one price quote (i.e. τUi = 1
Nmi

). Again, the parameter estimates for

µdegree and (µdegree)2 take the expected signs, are significantly different from zero at the 1%-

significance level, whereby the intersection-union test is rejected at the 1%-significance level
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for all measures of price dispersion. Note that the absolute size of the parameter estimates on

µdegree and (µdegree)2 increases considerably: as we assign a lower degree of informedness to

commuters on average (compared to the main specification, see Table 5) and a higher degree

of informedness to non-commuters the dispersion of the measure of information endowment

gets smaller, causing the parameter estimates to increase in absolute value.

In the fourth alternative specification we account for the fact that the number of stations

passed by differs between various commuter flows as well as between commuters and non-

commuters. This specification therefore considers that commuters passing by a particularly

large number of gasoline stations (compared to non-commuters and commuters passing by a

smaller number of stations) are less likely to be attracted, and that the probability that a

non-commuter refuels at a particular gasoline station declines the more stations are located

in the municipality. In this specification we assign weights to each commuter based on the

probability of his/her buying from a particular station if he/she randomly and uniformly

chooses a commuting route Rod ∈ Rod, and then randomly and uniformly buys from one of

the gas stations in Rod. The weights ωalternativei,od for a commuter flow from o to d for station i

can be expressed as the following equation:

ωalternativei,od =
1

|Rod|
∑

Rod∈Rod

1

|Rod|
1i∈Rod

The weighted number of informed consumers for station i can therefore be calculated as

Ii =
∑

o

∑
d6=o ω

alternative
i,od Cod. Consequently, the weighted number of uninformed consumers

is the ratio between non-commuters and the number of stations in the municipality.

The regression results using the variable µalternative weights are reported in Table 21. Again,

for all measures of price dispersion the parameter estimates on the linear term of this mea-

sure of information endowment take positive signs, whereas the estimated coefficients on

the quadratic term take negative signs. All parameter estimates on µalternative weights and

(µalternative weights)2 are significantly different from zero at the 1%-significance level. The
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intersection-union test is rejected at the 5%-significance level for each measure of price disper-

sion, indicating an inverted-U shaped relationship between price dispersion and information

endowment.

In the main specification we choose a critical distance dist = 250 meters, i.e. a commuter

flow from municipality o to municipality d is assigned to station i if the driving distance

from o to d passing through station i is less than 250 meters longer than traveling from o

to d directly. In this final set of sensitivity analyses we use alternative critical distances in

defining the measure of information endowment µ, namely dist = 50 meters (see Table 22)

and dist = 500 meters (see Table 23). Using a very narrow critical distance of 50 meters

results in the parameter estimates of µ and µ2 taking the expected sign, whereby the absolute

size of the parameter estimates gets somewhat smaller. The estimated coefficients of the linear

term are significantly different at the 1%- (5%-) significance level for five (all) measures of

price dispersion and the parameter estimates on the quadratic term are significantly different

at the 1%- (10%-) significance level in four (all) model specifications. The intersection-

union test, however, is rejected only twice (four times) at the 5%- (10%-) significance level.

Probably the mapping of gasoline stations is not accurate enough to assign transit commuters

correctly to gasoline stations if a very small value for dist is chosen. On the other hand, the

intersection-union test is rejected for all measures of price dispersion at the 5%-significance

level when using dist = 500 meters. As reported in Table 23, the parameter estimates take the

expected signs and are significantly different from zero at the 1%-significance level for µ and

µ2 for all measures of price dispersion, supporting again our main finding, namely that the

relationship between price dispersion and the share of informed consumers is characterized

by an inverse-U.
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Table 9: Regression results, using residual prices to calculate dispersion for gasoline and a market delineation of 2 miles

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µ 1.763∗∗∗ 1.806∗∗∗ 4.166∗∗∗ 3.178∗∗∗ 1.190∗∗∗ 0.834∗∗∗

(0.314) (0.468) (0.570) (0.598) (0.235) (0.265)

µ2 -1.151∗∗∗ -1.150∗∗∗ -2.794∗∗∗ -2.043∗∗∗ -0.765∗∗∗ -0.505∗∗

(0.257) (0.395) (0.478) (0.498) (0.198) (0.228)

# of rival firms with prices (N c
o) 0.057∗∗∗ 0.057∗∗∗ 0.107∗∗∗ 0.059∗∗∗ 0.018∗∗∗ 0.008∗∗∗

(0.004) (0.005) (0.006) (0.004) (0.002) (0.003)

# of rival firms (N c) 0.008∗∗∗ 0.009∗∗ 0.016∗∗∗ 0.025∗∗∗ 0.004∗∗∗ 0.003∗

(0.002) (0.004) (0.004) (0.003) (0.001) (0.002)

Constant -0.029 -0.054 -0.442∗∗ -1.245∗∗∗ 0.007 0.102∗∗

(0.122) (0.181) (0.219) (0.228) (0.089) (0.104)
Overall inverse-U test
t 2.37 1.33 3.31 2.02 1.85 0.77
p 0.009 0.092 0.001 0.022 0.032 0.221

Extreme (µ̂ = −β̂/2γ̂) 0.766 0.785 0.746 0.778 0.778 0.826
# of obs. 14,656 14,656 14,656 7,803 14,656 14,656
R2 0.241 0.133 0.263 0.354 0.167 0.105

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10% (∗) level.
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Table 10: Regression results, using residual prices to calculate dispersion and a market delineation based on municipal borders

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µ 3.435∗∗∗ 3.485∗∗∗ 5.713∗∗∗ 12.122∗∗∗ 1.352∗∗∗ 1.032∗∗∗

(0.413) (0.605) (0.786) (0.824) (0.318) (0.350)

µ2 -2.986∗∗∗ -3.048∗∗∗ -5.007∗∗∗ -10.485∗∗∗ -1.185∗∗∗ -0.855∗∗∗

(0.343) (0.511) (0.657) (0.707) (0.270) (0.296)

# of rival firms with prices (N c
o) 0.047∗∗∗ 0.047∗∗∗ 0.094∗∗∗ 0.058∗∗∗ 0.012∗∗∗ 0.005∗∗∗

(0.002) (0.003) (0.004) (0.002) (0.001) (0.001)

# of rival firms (N c) -0.001 -0.001 -0.002 0.009∗∗∗ -0.000 0.000
(0.001) (0.001) (0.002) (0.001) (0.000) (0.001)

Constant -0.682∗∗∗ -0.729∗∗∗ -1.142∗∗∗ -3.655∗∗∗ -0.125 0.027
(0.143) (0.211) (0.276) (0.285) (0.109) (0.123)

Overall inverse-U test
t 8.02 5.58 7.00 13.98 4.12 2.61
p 0.000 0.000 0.000 0.000 0.000 0.005

Extreme (µ̂ = −β̂/2γ̂) 0.575 0.572 0.571 0.578 0.571 0.604
# of obs. 14,037 14,037 14,037 7,895 14,037 14,037
R2 0.340 0.194 0.376 0.543 0.182 0.104

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10% (∗) level.
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Table 11: Regression results, using residual prices to calculate dispersion and a market delineation of 1.5 miles

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µ 1.397∗∗∗ 1.229∗∗∗ 2.742∗∗∗ 4.914∗∗∗ 0.841∗∗∗ 0.625∗∗

(0.290) (0.462) (0.582) (0.585) (0.241) (0.266)

µ2 -0.988∗∗∗ -0.829∗∗ -1.870∗∗∗ -3.729∗∗∗ -0.550∗∗∗ -0.436∗

(0.247) (0.403) (0.498) (0.510) (0.208) (0.233)

# of rival firms with prices (N c
o) 0.091∗∗∗ 0.093∗∗∗ 0.179∗∗∗ 0.091∗∗∗ 0.035∗∗∗ 0.022∗∗∗

(0.005) (0.007) (0.009) (0.006) (0.003) (0.004)

# of rival firms (N c) 0.002 0.002 0.014∗∗ 0.025∗∗∗ 0.006∗∗ -0.000
(0.003) (0.005) (0.006) (0.004) (0.002) (0.003)

Constant -0.446∗∗∗ -0.441∗∗ -0.913∗∗∗ -2.388∗∗∗ -0.195∗∗ -0.032
(0.107) (0.175) (0.223) (0.214) (0.092) (0.104)

Overall inverse-U test
t 2.60 1.12 2.19 5.21 1.32 1.13
p 0.005 0.131 0.014 0.000 0.094 0.130

Extreme (µ̂ = −β̂/2γ̂) 0.707 0.742 0.733 0.659 0.765 0.717
# of obs. 13,464 13,464 13,464 6,141 13,464 13,464
R2 0.237 0.119 0.256 0.330 0.172 0.110

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10% (∗) level.
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Table 12: Regression results, using residual prices to calculate dispersion and a market delineation of 10% relative overlap

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µ 6.149∗∗∗ 5.820∗∗∗ 11.236∗∗∗ 11.984∗∗∗ 3.020∗∗∗ 1.979∗∗∗

(0.412) (0.621) (0.736) (0.681) (0.260) (0.320)

µ2 -3.992∗∗∗ -3.702∗∗∗ -7.053∗∗∗ -7.664∗∗∗ -1.819∗∗∗ -1.128∗∗∗

(0.340) (0.516) (0.608) (0.556) (0.214) (0.264)

# of rival firms with prices (N c
o) 0.050∗∗∗ 0.049∗∗∗ 0.101∗∗∗ 0.082∗∗∗ 0.011∗∗∗ 0.006∗∗∗

(0.002) (0.003) (0.004) (0.003) (0.001) (0.002)

# of rival firms (N c) 0.009∗∗∗ 0.009∗∗∗ 0.017∗∗∗ 0.017∗∗∗ 0.005∗∗∗ 0.003∗∗∗

(0.001) (0.001) (0.002) (0.001) (0.000) (0.001)

Constant -1.799∗∗∗ -1.735∗∗∗ -3.485∗∗∗ -4.486∗∗∗ -0.806∗∗∗ -0.422∗∗∗

(0.140) (0.211) (0.253) (0.229) (0.091) (0.109)
Overall inverse-U test
t 6.13 3.42 5.26 6.89 3.13 1.02
p 0.000 0.000 0.000 0.000 0.001 0.155

Extreme (µ̂ = −β̂/2γ̂) 0.770 0.786 0.797 0.782 0.830 0.877
# of obs. 19,374 19,374 19,374 14,540 19,374 19,374
R2 0.298 0.162 0.345 0.431 0.211 0.114

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10% (∗) level.
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Table 13: Regression results, using residual prices to calculate dispersion and a market delineation of 90% relative overlap

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µ 4.691∗∗∗ 4.485∗∗∗ 7.470∗∗∗ 16.137∗∗∗ 1.486∗∗∗ 1.380∗∗∗

(0.494) (0.725) (0.916) (1.386) (0.374) (0.422)

µ2 -4.038∗∗∗ -3.940∗∗∗ -6.430∗∗∗ -14.871∗∗∗ -1.349∗∗∗ -1.108∗∗∗

(0.427) (0.636) (0.801) (1.389) (0.333) (0.366)

# of rival firms with prices (N c
o) 0.050∗∗∗ 0.049∗∗∗ 0.101∗∗∗ 0.066∗∗∗ 0.014∗∗∗ 0.009∗∗∗

(0.002) (0.003) (0.004) (0.003) (0.001) (0.002)

# of rival firms (N c) 0.003∗∗∗ 0.003∗∗ 0.004∗∗ 0.009∗∗∗ 0.000 0.000
(0.001) (0.001) (0.002) (0.001) (0.000) (0.001)

Constant -0.886∗∗∗ -0.845∗∗∗ -1.327∗∗∗ -4.241∗∗∗ -0.075 0.018
(0.166) (0.242) (0.308) (0.367) (0.124) (0.143)

Overall inverse-U test
t 8.79 5.82 7.35 8.41 3.87 2.38
p 0.000 0.000 0.000 0.000 0.000 0.009

Extreme (µ̂ = −β̂/2γ̂) 0.581 0.569 0.581 0.543 0.551 0.623
# of obs. 11,261 11,261 11,261 6,655 11,261 11,261
R2 0.392 0.239 0.436 0.572 0.203 0.107

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10% (∗) level.
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Table 14: Regression results, using residual prices to calculate dispersion and a market delineation of 2 miles, excluding 3 largest
towns (apart from Vienna)

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µ 2.379∗∗∗ 2.450∗∗∗ 4.894∗∗∗ 4.069∗∗∗ 1.457∗∗∗ 1.213∗∗∗

(0.307) (0.472) (0.598) (0.597) (0.247) (0.276)

µ2 -1.657∗∗∗ -1.670∗∗∗ -3.388∗∗∗ -2.711∗∗∗ -0.980∗∗∗ -0.854∗∗∗

(0.252) (0.394) (0.495) (0.483) (0.206) (0.232)

# of rival firms with prices (N c
o) 0.043∗∗∗ 0.048∗∗∗ 0.096∗∗∗ 0.069∗∗∗ 0.014∗∗∗ 0.004

(0.005) (0.007) (0.009) (0.006) (0.003) (0.004)

# of rival firms (N c) 0.013∗∗∗ 0.011∗ 0.031∗∗∗ 0.007 0.009∗∗∗ 0.008∗∗

(0.004) (0.006) (0.007) (0.005) (0.003) (0.003)

Constant -0.765∗∗∗ -0.767∗∗∗ -1.637∗∗∗ -1.625∗∗∗ -0.401∗∗∗ -0.218∗∗

(0.112) (0.179) (0.227) (0.241) (0.092) (0.106)
Overall inverse-U test
t 4.31 2.53 4.39 3.29 2.75 2.41
p 0.000 0.006 0.000 0.001 0.003 0.008

Extreme (µ̂ = −β̂/2γ̂) 0.718 0.734 0.722 0.750 0.744 0.710
# of obs. 13,116 13,116 13,116 6,366 13,116 13,116
R2 0.216 0.108 0.233 0.342 0.161 0.106

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10% (∗) level.
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Table 15: Regression results, using residual prices to calculate dispersion and a market delineation of 2 miles, excl. highway
stations

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µ 1.801∗∗∗ 1.870∗∗∗ 3.165∗∗∗ 4.260∗∗∗ 0.993∗∗∗ 0.912∗∗∗

(0.300) (0.460) (0.587) (0.555) (0.237) (0.264)

µ2 -1.291∗∗∗ -1.312∗∗∗ -2.191∗∗∗ -3.024∗∗∗ -0.668∗∗∗ -0.650∗∗∗

(0.249) (0.388) (0.489) (0.460) (0.200) (0.225)

# of rival firms with prices (N c
o) 0.063∗∗∗ 0.065∗∗∗ 0.121∗∗∗ 0.060∗∗∗ 0.018∗∗∗ 0.007∗∗∗

(0.004) (0.005) (0.006) (0.004) (0.002) (0.003)

# of rival firms (N c) 0.005∗ 0.006 0.017∗∗∗ 0.024∗∗∗ 0.006∗∗∗ 0.004∗∗

(0.002) (0.004) (0.004) (0.003) (0.001) (0.002)

Constant -0.589∗∗∗ -0.626∗∗∗ -1.103∗∗∗ -2.178∗∗∗ -0.243∗∗∗ -0.103
(0.109) (0.174) (0.221) (0.208) (0.088) (0.102)

Overall inverse-U test
t 3.63 2.18 2.84 4.48 1.90 1.92
p 0.000 0.015 0.002 0.000 0.029 0.028

Extreme (µ̂ = −β̂/2γ̂) 0.698 0.713 0.722 0.705 0.742 0.702
# of obs. 14,625 14,625 14,625 7,926 14,625 14,625
R2 0.262 0.138 0.282 0.374 0.173 0.104

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10% (∗) level.
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Table 16: Regression results, using residual prices to calculate dispersion and a market delineation of 2 miles, including Vienna

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µ 1.214∗∗∗ 1.092∗∗ 2.479∗∗∗ 3.192∗∗∗ 0.622∗∗∗ 0.387
(0.296) (0.460) (0.575) (0.549) (0.221) (0.261)

µ2 -0.781∗∗∗ -0.657∗ -1.525∗∗∗ -2.151∗∗∗ -0.354∗ -0.211
(0.248) (0.391) (0.485) (0.464) (0.191) (0.225)

# of rival firms with prices (N c
o) 0.054∗∗∗ 0.053∗∗∗ 0.132∗∗∗ 0.093∗∗∗ 0.019∗∗∗ 0.007∗∗∗

(0.003) (0.005) (0.005) (0.004) (0.002) (0.002)

# of rival firms (N c) 0.011∗∗∗ 0.012∗∗∗ 0.016∗∗∗ 0.013∗∗∗ 0.004∗∗∗ 0.004∗∗

(0.002) (0.003) (0.004) (0.003) (0.001) (0.002)

Constant -0.027 -0.008 -0.093 -1.067∗∗∗ 0.153∗ 0.281∗∗∗

(0.110) (0.176) (0.216) (0.210) (0.081) (0.100)
Overall inverse-U test
t 1.54 0.58 1.24 2.65 0.40 0.12
p 0.062 0.282 0.108 0.004 0.344 0.451

Extreme (µ̂ = −β̂/2γ̂) 0.777 0.831 0.813 0.742 0.879 0.914
# of obs. 17,993 17,993 17,993 11,000 17,993 17,993
R2 0.422 0.237 0.474 0.607 0.265 0.121

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10% (∗) level.
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Table 17: Regression results, using residual prices and a market delineation of 2 miles, at least 2 competitors observed

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µ 2.592∗∗∗ 2.580∗∗∗ 4.415∗∗∗ 4.192∗∗∗ 1.188∗∗∗ 1.255∗∗∗

(0.433) (0.664) (0.839) (0.555) (0.313) (0.375)

µ2 -1.893∗∗∗ -1.861∗∗∗ -3.121∗∗∗ -2.971∗∗∗ -0.801∗∗∗ -0.939∗∗∗

(0.356) (0.560) (0.694) (0.460) (0.260) (0.318)

# of rival firms with prices (N c
o) 0.052∗∗∗ 0.054∗∗∗ 0.099∗∗∗ 0.060∗∗∗ 0.010∗∗∗ 0.002

(0.004) (0.006) (0.007) (0.004) (0.002) (0.003)

# of rival firms (N c) 0.008∗∗∗ 0.008∗∗ 0.023∗∗∗ 0.024∗∗∗ 0.008∗∗∗ 0.006∗∗∗

(0.003) (0.004) (0.005) (0.003) (0.002) (0.002)

Constant -0.887∗∗∗ -0.894∗∗∗ -1.635∗∗∗ -1.616∗∗∗ -0.343∗∗∗ -0.193
(0.160) (0.256) (0.327) (0.220) (0.121) (0.149)

Overall inverse-U test
t 3.97 2.31 3.08 4.39 1.80 2.23
p 0.000 0.01 0.001 0.000 0.036 0.013

Extreme (µ̂ = −β̂/2γ̂) 0.685 0.693 0.707 0.706 0.742 0.668
# of obs. 10,685 10,685 10,685 7,996 10,685 10,685
R2 0.244 0.125 0.262 0.370 0.189 0.112

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10% (∗) level.
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Table 18: Regression results, using residual prices to calculate dispersion and a market delineation of 2 miles, no route-weights

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µno weights 1.753∗∗∗ 1.847∗∗∗ 3.212∗∗∗ 3.438∗∗∗ 1.030∗∗∗ 1.012∗∗∗

(0.283) (0.429) (0.553) (0.488) (0.220) (0.244)

(µno weights)2 -1.223∗∗∗ -1.280∗∗∗ -2.195∗∗∗ -2.305∗∗∗ -0.689∗∗∗ -0.713∗∗∗

(0.222) (0.342) (0.435) (0.386) (0.175) (0.196)

# of rival firms with prices (N c
o) 0.064∗∗∗ 0.065∗∗∗ 0.122∗∗∗ 0.059∗∗∗ 0.018∗∗∗ 0.008∗∗∗

(0.004) (0.005) (0.006) (0.004) (0.002) (0.003)

# of rival firms (N c) 0.004∗ 0.005 0.016∗∗∗ 0.024∗∗∗ 0.005∗∗∗ 0.004∗∗

(0.002) (0.004) (0.004) (0.003) (0.001) (0.002)

Constant -0.614∗∗∗ -0.670∗∗∗ -1.183∗∗∗ -1.425∗∗∗ -0.281∗∗∗ -0.159
(0.109) (0.172) (0.222) (0.213) (0.088) (0.100)

Overall inverse-U test
t 3.99 2.60 3.46 3.76 2.47 2.62
p 0.000 0.005 0.000 0.000 0.007 0.004

Extreme (µ̂ = −β̂/2γ̂) 0.717 0.721 0.732 0.746 0.747 0.710
# of obs. 14,851 14,851 14,851 7,996 14,851 14,851
R2 0.260 0.136 0.280 0.369 0.172 0.105

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10% (∗) level.
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Table 19: Regression results, using residual prices to calculate dispersion and a market delineation of 2 miles, using different
degrees of informedness

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µdegree 2.447∗∗∗ 2.601∗∗∗ 4.407∗∗∗ 4.842∗∗∗ 1.440∗∗∗ 1.408∗∗∗

(0.299) (0.450) (0.585) (0.541) (0.232) (0.257)

(µdegree)2 -1.894∗∗∗ -1.989∗∗∗ -3.362∗∗∗ -3.594∗∗∗ -1.087∗∗∗ -1.093∗∗∗

(0.237) (0.361) (0.466) (0.440) (0.188) (0.207)

# of rival firms with prices (N c
o) 0.064∗∗∗ 0.066∗∗∗ 0.123∗∗∗ 0.060∗∗∗ 0.018∗∗∗ 0.008∗∗∗

(0.004) (0.005) (0.006) (0.004) (0.002) (0.003)

# of rival firms (N c) 0.004∗ 0.005 0.015∗∗∗ 0.024∗∗∗ 0.005∗∗∗ 0.004∗∗

(0.003) (0.004) (0.004) (0.003) (0.001) (0.002)

Constant -0.785∗∗∗ -0.860∗∗∗ -1.471∗∗∗ -1.834∗∗∗ -0.380∗∗∗ -0.257∗∗∗

(0.111) (0.171) (0.223) (0.222) (0.088) (0.099)
Overall inverse-U test
t 7.14 4.71 6.25 6.41 4.77 4.61
p 0.000 0.000 0.000 0.000 0.000 0.000

Extreme (µ̂ = −β̂/2γ̂) 0.646 0.654 0.655 0.674 0.662 0.644
# of obs. 14,851 14,851 14,851 7,996 14,851 14,851
R2 0.261 0.137 0.281 0.370 0.172 0.105

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10% (∗) level.
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Table 20: Regression results, using residual prices to calculate dispersion and a market delineation of 2 miles, using different
degrees of informedness (locals are assumed to sample 1 station)

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µdegree 4.666∗∗∗ 4.922∗∗∗ 8.195∗∗∗ 6.882∗∗∗ 2.756∗∗∗ 2.218∗∗∗

(0.411) (0.621) (0.801) (0.708) (0.299) (0.346)

(µdegree)2 -3.448∗∗∗ -3.606∗∗∗ -6.053∗∗∗ -4.896∗∗∗ -2.035∗∗∗ -1.640∗∗∗

(0.287) (0.436) (0.563) (0.534) (0.214) (0.246)

# of rival firms with prices (N c
o) 0.068∗∗∗ 0.070∗∗∗ 0.129∗∗∗ 0.063∗∗∗ 0.021∗∗∗ 0.009∗∗∗

(0.004) (0.005) (0.006) (0.004) (0.002) (0.003)

# of rival firms (N c) 0.007∗∗ 0.008∗∗ 0.019∗∗∗ 0.030∗∗∗ 0.006∗∗∗ 0.005∗∗

(0.003) (0.004) (0.005) (0.003) (0.002) (0.002)

Constant -1.633∗∗∗ -1.755∗∗∗ -2.917∗∗∗ -2.700∗∗∗ -0.878∗∗∗ -0.582∗∗∗

(0.163) (0.251) (0.323) (0.291) (0.120) (0.141)
Overall inverse-U test
t 10.50 7.42 9.54 7.46 8.73 5.99
p 0.000 0.000 0.000 0.000 0.000 0.000

Extreme (µ̂ = −β̂/2γ̂) 0.677 0.683 0.677 0.703 0.677 0.676
# of obs. 14,851 14,851 14,851 7,996 14,851 14,851
R2 0.265 0.139 0.284 0.372 0.175 0.106

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10% (∗) level.
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Table 21: Regression results, using residual prices to calculate dispersion and a market delineation of 2 miles, using alternative
weights

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µalternative weights 0.588∗∗∗ 0.632∗∗∗ 1.312∗∗∗ 1.395∗∗∗ 0.512∗∗∗ 0.551∗∗∗

(0.145) (0.220) (0.295) (0.267) (0.118) (0.126)

(µalternative weights)2 -0.673∗∗∗ -0.684∗∗∗ -1.274∗∗∗ -1.493∗∗∗ -0.507∗∗∗ -0.633∗∗∗

(0.184) (0.282) (0.381) (0.359) (0.154) (0.161)

# of rival firms with prices (N c
o) 0.062∗∗∗ 0.064∗∗∗ 0.120∗∗∗ 0.059∗∗∗ 0.017∗∗∗ 0.007∗∗∗

(0.004) (0.005) (0.006) (0.004) (0.002) (0.003)

# of rival firms (N c) -0.000 0.000 0.007∗ 0.014∗∗∗ 0.002 0.002
(0.002) (0.004) (0.004) (0.003) (0.001) (0.002)

Constant -0.063 -0.088 -0.179∗ -0.383∗∗∗ 0.035 0.134∗∗

(0.054) (0.090) (0.108) (0.118) (0.044) (0.053)
Overall inverse-U test
t 3.19 2.00 2.45 3.28 2.46 3.42
p 0.001 0.023 0.007 0.001 0.007 0.000

Extreme (µ̂ = −β̂/2γ̂) 0.437 0.462 0.515 0.467 0.505 0.436
# of obs. 14,851 14,851 14,851 7,996 14,851 14,851
R2 0.259 0.136 0.280 0.366 0.171 0.104

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10% (∗) level.
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Table 22: Regression results, using residual prices to calculate dispersion and a market delineation of 2 miles, dist = 50m

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µ 1.424∗∗∗ 1.639∗∗∗ 2.484∗∗∗ 4.296∗∗∗ 0.661∗∗∗ 0.645∗∗

(0.308) (0.469) (0.596) (0.594) (0.244) (0.266)

µ2 -0.955∗∗∗ -1.109∗∗∗ -1.576∗∗∗ -3.062∗∗∗ -0.368∗ -0.416∗

(0.262) (0.403) (0.508) (0.504) (0.210) (0.230)

# of rival firms with prices (N c
o) 0.063∗∗∗ 0.065∗∗∗ 0.122∗∗∗ 0.060∗∗∗ 0.018∗∗∗ 0.007∗∗∗

(0.004) (0.005) (0.006) (0.004) (0.002) (0.003)

# of rival firms (N c) 0.004∗ 0.005 0.015∗∗∗ 0.024∗∗∗ 0.005∗∗∗ 0.004∗∗

(0.002) (0.004) (0.004) (0.003) (0.001) (0.002)

Constant -0.485∗∗∗ -0.578∗∗∗ -0.913∗∗∗ -1.637∗∗∗ -0.154∗ -0.029
(0.109) (0.172) (0.218) (0.224) (0.088) (0.099)

Overall inverse-U test
t 2.00 1.52 1.37 4.03 0.27 0.83
p 0.023 0.064 0.086 0.000 0.394 0.204

Extreme (µ̂ = −β̂/2γ̂) 0.745 0.739 0.788 0.701 0.899 0.776
# of obs. 14,851 14,851 14,851 7,996 14,851 14,851
R2 0.260 0.136 0.280 0.370 0.172 0.104

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10% (∗) level.
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Table 23: Regression results, using residual prices to calculate dispersion and a market delineation of 2 miles, dist = 500m

(1) (2) (3) (4) (5) (6)
VOIM VOI Range Trimmed range SD AD

µ 1.774∗∗∗ 1.818∗∗∗ 3.073∗∗∗ 3.971∗∗∗ 0.980∗∗∗ 1.026∗∗∗

(0.307) (0.467) (0.601) (0.549) (0.241) (0.267)

µ2 -1.273∗∗∗ -1.281∗∗∗ -2.129∗∗∗ -2.777∗∗∗ -0.664∗∗∗ -0.755∗∗∗

(0.251) (0.389) (0.494) (0.452) (0.201) (0.224)

# of rival firms with prices (N c
o) 0.064∗∗∗ 0.065∗∗∗ 0.122∗∗∗ 0.059∗∗∗ 0.018∗∗∗ 0.008∗∗∗

(0.004) (0.005) (0.006) (0.004) (0.002) (0.003)

# of rival firms (N c) 0.004∗ 0.005 0.016∗∗∗ 0.024∗∗∗ 0.005∗∗∗ 0.004∗∗

(0.002) (0.004) (0.004) (0.003) (0.001) (0.002)

Constant -0.602∗∗∗ -0.643∗∗∗ -1.107∗∗∗ -1.558∗∗∗ -0.254∗∗∗ -0.150
(0.112) (0.178) (0.229) (0.221) (0.091) (0.104)

Overall inverse-U test
t 3.66 2.21 2.82 4.09 1.98 2.50
p 0.000 0.014 0.002 0.000 0.024 0.006

Extreme (µ̂ = −β̂/2γ̂) 0.697 0.710 0.722 0.715 0.738 0.679
# of obs. 14,851 14,851 14,851 7,996 14,851 14,851
R2 0.260 0.136 0.280 0.370 0.172 0.104

Standard errors in parentheses
Regressions include station- and region-specific characteristics, fixed state and fixed time effects as well as dummy variables for
missing exogenous variables. Inference of the parameter estimates is based on robust (heteroscedasticity consistent) standard
errors (White, 1980). Asterisks denote statistical significance in a t-test at 1% (∗∗∗), 5% (∗∗) or 10% (∗) level.
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