
Programming, Data Management and Visualization
Module C: Data management

Alexander Ahammer

Department of Economics, Johannes Kepler University, Linz, Austria
Christian Doppler Laboratory Ageing, Health, and the Labor Market, Linz, Austria

β version, may still be updated
Last updated: Monday 9th December, 2019 (13:31)

Alexander Ahammer (JKU) Module C: Data management 1 / 56

Introduction

In this module cover data validation, we hear briefly about database
structures in general, and we learn how to reorganize and combine datasets is
Stata.

At the end of the module, you should know
I how to validate data through scripted data checking
I the mechanics of the collapse and reshape commands
I how to combine datasets with merge, append, and joinby

The book covers also issues concerning saving and reusing intermediate
results, as well as presenting outputs in tables.

=⇒ We postpone these topics to module D.

Big data issues are discussed at di�erent points in this module.

Alexander Ahammer (JKU) Module C: Data management 2 / 56

C.1

Data validation

Alexander Ahammer (JKU) Module C: Data management 3 / 56

Sanity checking

Preparing data should always start with sanity checking.
I Do all values of the raw data make sense?
I Are there any coding errors that are apparent in the range of data values?
I Are there numeric values that should be coded as missings?

Always perform a series of checks on new data you input. This is the start of
your data transformation.

Write another do-file that corrects these errors (don’t do this in Excel), and
keep both the initial and the final data set separately.

Your best friends here are describe, summarize, tabulate, and
histogram, which provide useful information on imported data.

Alexander Ahammer (JKU) Module C: Data management 4 / 56

Sanity checking
. su p_age sl_dur e_wage

Variable Obs Mean Std. Dev. Min Max

p_age 322,375 36.82896 11.19948 18 65
sl_dur 322,375 6.020889 5.386769 1 44
e_wage 322,375 25994.96 16373.24 .0033333 1144276

. ta p_female
[worker] =1

if female Freq. Percent Cum.

0 192,279 59.64 59.64
1 130,096 40.36 100.00

Total 322,375 100.00
. g year = yofd(sl_start)
. ta year

year Freq. Percent Cum.

2004 444 0.14 0.14
2005 35,650 11.06 11.20
2006 33,631 10.43 21.63
2007 38,242 11.86 33.49
2008 42,408 13.15 46.65
2009 40,596 12.59 59.24
2010 40,211 12.47 71.71
2011 45,379 14.08 85.79
2012 45,814 14.21 100.00

Total 322,375 100.00
. hist e_wage, lcolor("255 69 0") fcolor("255 69 0%30") xsize(6.5) freq ///
> ylab(, format(%9.0fc) nogrid) xlab(, nogrid)
(bin=55, start=.00333333, width=20805.022)
. gr export "slides/graphs/wagedist.pdf", as(pdf) replace
(file slides/graphs/wagedist.pdf written in PDF format)

Alexander Ahammer (JKU) Module C: Data management 5 / 56

Sanity checking

0

50,000

100,000

150,000

Fr
eq

ue
nc

y

0 500000 1000000

[emp] annual wage

Alexander Ahammer (JKU) Module C: Data management 6 / 56

Sanity checking

. // comment these three commands out if you want to download the dataset below

. *net from "http://www.stata-press.com/data/itsp2"

. *net set other data/itsp2

. *net get itsp2-data

. use data/itsp2/census2b.dta, clear
(Version of census2a for data validation purposes)
. des
Contains data from data/itsp2/census2b.dta

obs: 50 Version of census2a for data validation purposes
vars: 5 9 Oct 2015 12:43
size: 1,650

storage display value
variable name type format label variable label

state str14 %14s
region str7 %9s
pop float %9.0g
medage float %9.0g
drate float %9.0g

Sorted by:
. su pop-drate, sep(0)

Variable Obs Mean Std. Dev. Min Max

pop 49 4392737 4832522 -9 2.37e+07
medage 50 35.32 41.25901 24.2 321
drate 50 104.3 145.2496 40 1107

Alexander Ahammer (JKU) Module C: Data management 7 / 56

Using the assert command

In the last example based on census data, several anomalies are revealed
that have to be corrected.

I Population data is missing for one state (unlikely in proper census data)
I At least one state has negative population numbers−→ coding error
I Maximum of the median age var of 321−→ coding error
I Mean death rate is 104, a value 10 times the mean is unlikely as well

In your research, you have subject-matter knowledge, which helps you define
sensible ranges of values for the vars in your data.

You may also find the codebook command helpful in identifying data errors.

Let’s write a code now that uses data validation techniques that can be
applied for datasets with millions of observations. We use assert to perfom
sanity checks−→ if the code runs without error, all checks are passed.

Alexander Ahammer (JKU) Module C: Data management 8 / 56

Using the assert command

use data/itsp2/census2b.dta
// check pop

list if !inrange(pop,300000,3e7)
assert inrange(pop,300000,3e7)

// check medage
list if !inrange(medage,20,50)
assert inrange(medage,20,50)

// check drate
su drate
list if !inrange(drate,10,r(mean)*r(sd))
assert inrange(drate,10,r(mean)*r(sd))

Alexander Ahammer (JKU) Module C: Data management 9 / 56

Correction data mistakes

. use data/itsp2/census2b.dta, clear
(Version of census2a for data validation purposes)
. // check pop
. list if !inrange(pop,300000,3e7)

state region pop medage drate

4. Arkansas South -9 30.6 99
10. Georgia South . 28.7 81
15. Iowa N Cntrl 0 30 90

. assert inrange(pop,300000,3e7)
3 contradictions in 50 observations
assertion is false
r(9);
end of do-file
r(9);
. do "C:\Users\ALEXAN~1\AppData\Local\Temp\STDf0a8_000000.tmp"

Alexander Ahammer (JKU) Module C: Data management 10 / 56

Sanity checking

. su pop
Variable Obs Mean Std. Dev. Min Max

pop 49 4392737 4832522 -9 2.37e+07
. replace pop = r(mean) if !inrange(pop,300000,3e7)
(3 real changes made)
. // check pop
. list if !inrange(pop,300000,3e7)
. assert inrange(pop,300000,3e7)

IMPORTANT There is no right or wrong way of correcting such mistakes, imputing
the sample mean for non-valid values is only one possibility. You may also impute
other values (for example the minimum or the maximum if you want to censor a
variable, consider winsorizing or certain imputation techniques, or dropping the
observations altogether. What option you choose always depends on the particular
problem at hand.

Alexander Ahammer (JKU) Module C: Data management 11 / 56

Other useful data validation techniques

Twoway tables with tab can also be helpful. Suppose you have a dataset with
medical questionnaires, you may want to check something like

tab pregnant gender

which should display non-zero values only in the female column. You can also
use assert pregnant == 1 if gender == "Male", which should not
return an error.

With tabstat you can assess means of continuous variables by realizations
of categorical variables.

You can use duplicates to check for duplicate observations (pro tip for RA’s
working with the ASSD and GKK data−→ always check this at the beginning
of your do-files).

Download the user-written code distinct, which returns the distinct
number of observations for a specified varlist. This is especially informative
with panel data.

Alexander Ahammer (JKU) Module C: Data management 12 / 56

Other useful data validation techniques

. use "data/pdmv_sl.dta", clear
(All sick leaves 2004-2012 for 10% sample of Austrian employees)
. tabstat sl_dur, by(gp_sex) s(mean sd)
Summary for variables: sl_dur

by categories of: gp_sex ([GP] sex)
gp_sex mean sd

M 6.044573 5.400271
W 5.997163 5.350472

Total 6.038739 5.394182

. duplicates list
Duplicates in terms of all variables
(0 observations are duplicates)
. distinct id_worker id_GP id_firm

Observations
total distinct

id_worker 322375 52739
id_GP 322375 1033

id_firm 322375 17620

Alexander Ahammer (JKU) Module C: Data management 13 / 56

Unit tests

Real programmers write unit tests for just about every piece of code. These
scripts check whether the piece of code does everything it is expected to do.

For a program to compile, it must pass all the unit tests. Many bugs are thus
caught automatically. A large program will often have as much testing code as
program code.

Econometricians typically don’t write unit tests, instead we interactively apply
di�erent validation checks to see whether our code produces the right data or
regression output.

This is ine�cient =⇒ write unit tests.

Alexander Ahammer (JKU) Module C: Data management 14 / 56

C.2

Reorganizing data

Alexander Ahammer (JKU) Module C: Data management 15 / 56

The collapse command

With collapse you can make a new dataset from summary statistics.
Alternatively, you can also use contract to create a dataset of frequencies.

The syntax of collapse is

collapse (stat1) varlist (stat2) varlist ...
where stat can be mean, median, min, max, sum, etc. (see the help file). It
also allows multiple vars in a by options, which computes the summary
statistics of varlist for every unique combination of the vars in by.

I varlist can also consist of newvar =oldvar , which is especially helpful if
you want to generate di�erent statistics of the same var, or you want to rename
the statistic of a var immediately.

collapse takes the dataset in memory and creates a new dataset containing
summary statistics of the original data. This means that the original dataset
will vanish unless you store it in memory using preserve.

We will see how the command works in some of the examples in this module.

Alexander Ahammer (JKU) Module C: Data management 16 / 56

The collapse command

. collapse (firstnm) p_female (sum) sl_dur (max) p_age, by(id_worker)

. list in 1/5

id_wor~r p_female sl_dur p_age

1. 166 1 17 59.83333
2. 276 1 9 55.75
3. 548 1 34 52.66667
4. 579 1 58 59.75
5. 1063 1 47 57.91667

TIPP Here we use the function firstnm, which carries the first non-missing observation of p_female
over to the collapsed dataset. Do this only for vars that are constant across obs in the by-group.

Alternatively, preserve the data, make a dataset containing only one obs per id_worker with all
constant vars, save it, and restore the original data. Then collapse the statistics you need and merge
back the dataset from before.

Alexander Ahammer (JKU) Module C: Data management 17 / 56

Big data issues Collapse and big data

Big data often consist of millions of rows of information (e.g., all sick leaves in
Upper Austria, all medication prescriptions, all employment spells) and/or
perhaps (tens of) thousands of columns (large N / large K)

It is impossible to work with such data (i.e., running regressions) without
rearranging them in some shape or form first.

Typically these data can be aggregated on a meaningful level
−→ e.g., aggregate sick leaves to a worker-year panel.

This can be done with collapse.

Check this slide set on ftools for a variety of user-written procedures
that work faster with big data

collapse vs. fcollapse

Alexander Ahammer (JKU) Module C: Data management 18 / 56

https://www.stata.com/meeting/baltimore17/slides/Baltimore17_Correia.pdf

Source: Correia (2017), ‘ftools: a faster Stata for large datasets’

Alexander Ahammer (JKU) Module C: Data management 19 / 56

Big data issues Collapse and big data

. g year = yofd(sl_start)

. collapse (count) nosls=sl_start (mean) p_age sl_dur, by(id_worker year)

. format nosls %9.0f

. list if id_worker <= 579, sepby(id_worker)

id_wor~r year nosls p_age sl_dur

1. 166 2011 2 58.70834 6.5
2. 166 2012 1 59.83333 4

3. 276 2009 1 55.75 9

4. 548 2005 3 49.91667 3.666667
5. 548 2006 2 51 9.5
6. 548 2008 1 52.66667 4

7. 579 2005 3 57.36111 9.666667
8. 579 2006 1 58.75 4
9. 579 2007 3 59.25 8.333333

Alexander Ahammer (JKU) Module C: Data management 20 / 56

Using reshape to reorganize data

Alexander Ahammer (JKU) Module C: Data management 21 / 56

Using reshape to reorganize data

reshape is an essential command to use for data transformation. It’s syntax
is di�cult and it often takes multiple runs of debugging to get it working.

Before we see what it does, you have to understand how Stata distinguishes
between wide and long data formats.

This is the long format:

. list if id_worker <= 579, sepby(id_worker)

id_wor~r year sl

1. 276 2009 9

2. 548 2005 3.666667
3. 548 2006 9.5
4. 548 2008 4

5. 579 2005 9.666667
6. 579 2006 4
7. 579 2007 8.333333

Alexander Ahammer (JKU) Module C: Data management 22 / 56

Using reshape to reorganize data

This is the wide format:

. list if id_worker <= 579

id_wor~r sl2005 sl2006 sl2007 sl2008 sl2009

1. 276 9
2. 548 3.666667 9.5 . 4 .
3. 579 9.666667 4 8.333333 . .

In long format, one datum (i.e., one unique observation) is identified as a
combination of id_worker and year, in wide format a datum is identified
by a single variable.

Why would you want to change between those formats?
I Panel data are typically stored in long format.
I The wide format is useful to perform rowwise calculations.
I Graphical representations of results often require one or the other format.

Alexander Ahammer (JKU) Module C: Data management 23 / 56

Using reshape to reorganize data
Syntax generally

long

i j stub

1 1 x11
1 2 x12
2 1 x21
2 2 x22

reshape←−−−→

wide
i stub1 stub2

1 x11 x12
2 x21 x22

From long to wide (with j being an existing var):

reshape wide stub, i(i) j(j)

From wide to long (with j being a new var):

reshape long stub, i(i) j(j)

NOTE Use the string option if j() may contain string values, and be
aware that you can use @ if your stubs contain su�xes after the j ’s.

Alexander Ahammer (JKU) Module C: Data management 24 / 56

Using reshape to reorganize data
Stata examples

. // as before, let´s create a dataset containing averages sl durs for every worker

. collapse (mean) sl=sl_dur if inrange(year,2005,2009), by(id_worker year)

. // now, reshape the data into wide format

. reshape wide sl, i(id_worker) j(year)
(note: j = 2005 2006 2007 2008 2009)
Data long -> wide

Number of obs. 108169 -> 43184
Number of variables 3 -> 6
j variable (5 values) year -> (dropped)
xij variables:

sl -> sl2005 sl2006 ... sl2009

. list if id_worker <= 1803, sep(0)

id_wor~r sl2005 sl2006 sl2007 sl2008 sl2009

1. 276 9
2. 548 3.666667 9.5 . 4 .
3. 579 9.666667 4 8.333333 . .
4. 1063 12 . . 8 8
5. 1085 . . 5.5 . .
6. 1689 8.666667 . . 9 .
7. 1738 4 3 3.5 1 .
8. 1788 28 7.5 . . .
9. 1803 . 19.5 13 . .

Alexander Ahammer (JKU) Module C: Data management 25 / 56

Using reshape to reorganize data
Stata examples

. // suppose our using data is in wide format, as on the last slide, but the sl vars contain suffixes

. foreach v of varlist sl* {
2. rename `v´ `v´_total
3. }

. // then the reshape command back to long format has to look like this:

. reshape long sl@_total, i(id_worker) j(y) /* with year being a newly generated var */
(note: j = 2005 2006 2007 2008 2009)
Data wide -> long

Number of obs. 43184 -> 215920
Number of variables 6 -> 3
j variable (5 values) -> y
xij variables:
sl2005_total sl2006_total ... sl2009_total-> sl_total

. list if id_worker <= 548, sepby(id_worker)

id_wor~r y sl_total

1. 276 2005 .
2. 276 2006 .
3. 276 2007 .
4. 276 2008 .
5. 276 2009 9

6. 548 2005 3.666667
7. 548 2006 9.5
8. 548 2007 .
9. 548 2008 4

10. 548 2009 .

Alexander Ahammer (JKU) Module C: Data management 26 / 56

C.3

Combining data

Alexander Ahammer (JKU) Module C: Data management 27 / 56

Relational databases in general

A database is simply a set of related datasets. So far we have encountered
only single datasets, but these are parts of much larger databases.

I pdmv_sl.dta is drawn from the Austrian Social Security Database
I UA_population.csv is from the Statistics Austria database

A relational database organizes one or more datasets (or ‘relations’)
consisting of columns and rows, with a unique key identifying each row.

I In CS, rows are also called records or tuples. Columns are also called attributes.

Generally, each table/relation/dataset represents one entity type (such as
workers, sick leaves, or districts). The rows represent instances of that type of
entity (one sick leave), and columns represent values attributed to that
instance (start of the sick leave, information on the worker, and so on).

Di�erent datasets can be linked through the unique keys.
I What is the unique key in pdmv_sl.dta?

Alexander Ahammer (JKU) Module C: Data management 28 / 56

Big data issues Store data in relational databases!

Avoid storing data in tables like this one:
zip district zip_pop district_pop

4020 401 107236 182304
4040 401 75068 182304

. 401 . 182304
4400 402 30509 38347

. 402 . 38347

Instead, set up a relational database:
zip district pop

4020 401 107236
4040 401 75068
4400 402 30509

district pop

401 182304
402 38347

Now there is no ambiguity−→ no missing zip codes and no conflicting
definitions. If the pop of a district is required, the second data can be used
directly. The database is self-documenting, and each table has a unique key.

These datasets can easily be combined through their unique keys.

Alexander Ahammer (JKU) Module C: Data management 29 / 56

Types of relations in databases

Consider two datasets A and B. Depending on the information in these datasets,
more specifically how many obs are attached to every unique id, these datasets
can be related in the following ways:

A one-to-one (1:1) relationship between A and B exists, when one row in
table A may be linked with only one row in table B, and vice versa.1

A one-to-many (1:m) relationship exists, when one row in table A may be
linked with many rows in tableB, but one row in tableB is linked to only one
row in table A (note the equivalence with a many-to-one relationship).

A many-to-many (m:m or n:m) relationship is given when multiple entries in
A relate to multiple entries in B. Typically we would transform one of the
datasets before merging, in order to get a 1:m relationship. More on that later.

1Note the conditional may be: These relationships can exist, but they don’t necessarily have to. For
example, there may be rows in A that cannot be mapped to any row in B, yet the datasets may still be
in a 1:1, 1:m, or m:m relationship.

Alexander Ahammer (JKU) Module C: Data management 30 / 56

New datasets

We consider three new datasets in this module:
I pdmv_children.dta
I pdmv_pnat.dta
I pdmv_addinfo.dta

Alexander Ahammer (JKU) Module C: Data management 31 / 56

Combine datasets

Dataset 1

id var1 var2

111 · · · · · ·
112 · · · · · ·
113 · · · · · ·

Dataset 2

id var1 var2

121 · · · · · ·
122 · · · · · ·
123 · · · · · ·

Dataset 3

id var3 var4

111 · · · · · ·
112 · · · · · ·
113 · · · · · ·

Alexander Ahammer (JKU) Module C: Data management 32 / 56

Combine datasets

Note that these three datasets contain di�erent information−→ Dataset 1
and Dataset 2 contain the same vars for di�erent id’s, while Dataset 3
contains the same id’s but di�erent vars as in Dataset 1.

These are simple cases, because one id always identifies one unique
observation, or equivalently, per unique observation (id) there is only one
row with information.

As long as id has the same name and data type (string vs. numeric) across
the two datasets, 1 and 2 can be combined using the append command. To
combine 1 and 3 we would use the merge command.

In Stata, the dataset in memory is called the master data, while the dataset
which is to be merged or appended is called using data.

Alexander Ahammer (JKU) Module C: Data management 33 / 56

Append data

Sometimes you have to download datasets from di�erent years or di�erent
entities separately (e.g., survey waves). Combining these datasets into one
would be a task for append. [Manual link: Append]

In terms of the example above, it would mean to simply stack Dataset 1 and
Dataset 2:

id var1 var2

111 · · · · · ·
112 · · · · · ·
113 · · · · · ·
121 · · · · · ·
122 · · · · · ·
123 · · · · · ·

Importantly, it is no problem if one of the datasets contains di�erent vars
apart from id. In this case Stata attaches missings for id’s that don’t have
information on the var which is non-existing in the original data.

Alexander Ahammer (JKU) Module C: Data management 34 / 56

https://www.stata.com/manuals14/dappend.pdf

Append data
Datasets with di�erent vars

Dataset 1

id var1 var2

111 · · · · · ·
112 · · · · · ·
113 · · · · · ·

Dataset 2

id var1 var2 var3

121 · · · · · · · · ·
122 · · · · · · · · ·
123 · · · · · · · · ·

Dataset 1+2 (after append)

id var1 var2 var3

111 · · · · · ·
112 · · · · · ·
113 · · · · · ·
121 · · · · · · · · ·
122 · · · · · · · · ·
123 · · · · · · · · ·

Alexander Ahammer (JKU) Module C: Data management 35 / 56

Append data
In Stata

. // store data by years for illustrative purposes

. count
322,375

. forval i = 2004/2012 {
2. preserve
3. keep if year == `i´
4. qui save data/tmp_`i´.dta, replace
5. restore
6. }

(321,931 observations deleted)
(286,725 observations deleted)
(288,744 observations deleted)
(284,133 observations deleted)
(279,967 observations deleted)
(281,779 observations deleted)
(282,164 observations deleted)
(276,996 observations deleted)
(276,561 observations deleted)
. // append data again
. use data/tmp_2004.dta, clear
(All sick leaves 2004-2012 for 10% sample of Austrian employees)
. forval i = 2005/2012 {

2. qui append using data/tmp_`i´.dta
3. erase data/tmp_`i´.dta
4. }

. count
322,375

. erase data/tmp_2004.dta

Alexander Ahammer (JKU) Module C: Data management 36 / 56

Merge data

Now consider the case where you have two datasets, and both contain
di�erent information on a unique identifier that you want to combine into a
single dataset. [Manual link: Merge]

For example, you may want to combine Dataset 1 and Dataset 3 from above:
id var1 var2 var3 var4

111 · · · · · · · · · · · ·
112 · · · · · · · · · · · ·
113 · · · · · · · · · · · ·

This is a simple 1:1 merge. In Stata, such a merge can be done using the
merge command. Its syntax is as follows:

merge 1:1 varlist using filename

where varlist is the common unique identifier in both datasets.

Alexander Ahammer (JKU) Module C: Data management 37 / 56

https://www.stata.com/manuals14/dmerge.pdf

The newly introduced dataset pdmv_addinfo.dta also allows a 1:1 merge,
because it contains exactly one observation for every id_worker
sl_start combination (i.e., every individual sick leave) as well.

Let’s try the merge and examine what it does:
. merge 1:1 id_worker sl_start using "D:\Dropbox\pdmv\data\pdmv_addinfo.dta"

Result # of obs.

not matched 7,139,443
from master 0 (_merge==1)
from using 7,139,443 (_merge==2)

matched 322,375 (_merge==3)

First, we observe that the data contains now 7,461,818 obs. Browsing the data,
we find that 7,139,443 obs have information on the newly added vars sl_diag
p_plz p_gkz, but not on the original vars.

Second, we observe that Stata generates a new variable called _merge. This
variable takes on

I 1 if an observation was found only in the master dataset (pdmv_addinfo),
I 2 if it was found only in the using dataset, or
I 3 if it was found in both datasets.

Alexander Ahammer (JKU) Module C: Data management 38 / 56

1:1 merges

This means that a successful merge is flagged with _merge == 3. Obs with
_merge == 1 appear only in the master data, such obs do not exist as all
worker–sick leave combinations also have entries in the master data.

Why are there 7m obs in the using data that could not be found in
pdmv_sl.dta? Remember the data description−→ this is only a 10%
sample of all workers!

In most applications, it makes sense to automatically drop obs with _merge
== 2, and then drop the _merge var altogether.

. merge 1:1 id_worker sl_start using "D:\Dropbox\pdmv\data\pdmv_addinfo.dta"
Result # of obs.

not matched 7,139,443
from master 0 (_merge==1)
from using 7,139,443 (_merge==2)

matched 322,375 (_merge==3)

. drop if _merge == 2
(7,139,443 observations deleted)
. drop _merge

I If you want to keep _merge for future reference, give it a di�erent name!

Alexander Ahammer (JKU) Module C: Data management 39 / 56

1:1 merges

. list id_worker sl_start sl_diag p_plz p_gkz if id_worker <= 1063, sepby(id_worker)

id_wor~r sl_start sl_diag p_plz p_gkz

1. 166 04jun2011 J069 4331 411
2. 166 09nov2011 J040 4331 411
3. 166 20oct2012 J40 4331 411

4. 276 15jan2009 J069 4470 410

5. 548 18feb2005 J10 4770 414
6. 548 04jul2005 M544 4770 414
7. 548 05dec2005 I95 4770 414
8. 548 09aug2006 J02 4770 414
9. 548 28aug2006 M53 4770 414

10. 548 10apr2008 M5384 4770 414

11. 579 24jan2005 M53 4600 403
12. 579 02mar2005 J068 4600 403
13. 579 02dec2005 M53 4600 403
14. 579 10oct2006 J068 4600 403
15. 579 11jan2007 J068 4600 403
16. 579 19jan2007 J068 4600 403
17. 579 12oct2007 J068 4600 403

18. 1063 01apr2005 M652 4040 401
19. 1063 22sep2008 J068 4040 401
20. 1063 01oct2008 M199 4040 401
21. 1063 08sep2009 M771 4040 401
22. 1063 07apr2010 M545 4040 401
23. 1063 27oct2010 M5494 4040 401

Alexander Ahammer (JKU) Module C: Data management 40 / 56

1:1 merges

Note that in this example, it appears that p_plz and p_gkz do not change
across sick leaves. If this is really the case, it would make more sense to store
the information on living place in a separate database which contains only
one obs per unique id id_worker.

However, since the zip code is stored in numeric format, we can easily check
whether it contains di�erent values across id_worker’s by computing its sd:

. egen sd_plz = sd(p_plz), by(id_worker)
(10051 missing values generated)
. su sd_plz

Variable Obs Mean Std. Dev. Min Max

sd_plz 312,324 23.79653 126.7822 0 3852.318

Thus, if people move, their living place changes between sick leaves. This is
the reason why I stored p_plz and p_gkz in this data table.

Alexander Ahammer (JKU) Module C: Data management 41 / 56

Other merges

Instead of 1:1 merges, Stata can also perform m:1 (or 1:m) and m:m merges,
these joins are also the only part of the syntax you have to change.

merge m:1 varlist using filename
merge 1:m varlist using filename
merge m:m varlist using filename

Avoid m:m merges at all cost!
I An m:m relationship means you have multiple observations in both datasets for

some values of the merge key variable(s).

I Usually the result of merging two datasets that both have more than one value
of the merge key variable(s) is unpredictable, because it depends on the sort
order of the datasets.

I Repeated execution of the same do-file will likely result in a di�erent number of
cases in the result dataset without any error indication. A m:m merge has no
unique outcome. When it is encountered, it usually results from a coding error in
one of the files.

I Use joinby instead, which generates all possible pairwise combinations within
groups (see later).

Alexander Ahammer (JKU) Module C: Data management 42 / 56

m:1 merges

Suppose you want to extend the sick leave data with workers’ nationalities.
These datasets are in a m:1 relationship, as one id_worker appears only
once in pdmv_pnat.dta, but every worker in pdmv_pnat.dta can appear
many times in pdmv_sl.dta.

. merge m:1 id_worker using "D:\Dropbox\pdmv\data\pdmv_pnat.dta"
Result # of obs.

not matched 721,213
from master 0 (_merge==1)
from using 721,213 (_merge==2)

matched 322,375 (_merge==3)

. drop if _merge == 2
(721,213 observations deleted)
. drop _merge

Again, we drop the 721,213 workers that have nationalities but are not in our
sick leave data (_merge == 2). We have 322,375 perfect matches, and no
obs. in the sick leave data that do not appear in the nationalities data
(although they can have missings).

Alexander Ahammer (JKU) Module C: Data management 43 / 56

m:1 merges
. list id_worker sl_start p_nat if id_worker <= 1063, sepby(id_worker)

id_wor~r sl_start p_nat

1. 166 09nov2011 .
2. 166 04jun2011 .
3. 166 20oct2012 .

4. 276 15jan2009 Österreich

5. 548 09aug2006 Österreich
6. 548 28aug2006 Österreich
7. 548 04jul2005 Österreich
8. 548 10apr2008 Österreich
9. 548 18feb2005 Österreich

10. 548 05dec2005 Österreich

11. 579 10oct2006 Österreich
12. 579 11jan2007 Österreich
13. 579 12oct2007 Österreich
14. 579 02mar2005 Österreich
15. 579 24jan2005 Österreich
16. 579 19jan2007 Österreich
17. 579 02dec2005 Österreich

18. 1063 07apr2010 Österreich
19. 1063 22sep2008 Österreich
20. 1063 08sep2009 Österreich
21. 1063 01oct2008 Österreich
22. 1063 27oct2010 Österreich
23. 1063 01apr2005 Österreich

Alexander Ahammer (JKU) Module C: Data management 44 / 56

Big data issues Merging data

Merging data can be extremely memory-intensive with big datasets. If your data
matrix is already huge, its dimension grows even further when you attempt a
merge. However, there are certain tricks you can use:

Open a second Stata instance and load the using data. Check whether you can
collapse the information you need first, or reduce its size by some other
means.

Use the keepusing option to merge only variables you really need from the
using data. This can often make the di�erence between a successful merge
and Stata returning a memory error.

Sometimes, there may also be vars in the master data you don’t necessarily
need. Drop these before the merge.

Specify keep(1 3) to save some additional time.

If possible, increase Stata’s matsize.

Alexander Ahammer (JKU) Module C: Data management 45 / 56

m:m merges

Sometimes you have to combine datasets where multiple entries in the using
data refer to multiple entries in the master data.

For example, you may want to match data on all children of women in the
data from pdmv_children.

Forget about merge m:m.

Sometimes it’s viable to reshape one of the data sets first (for example, put
children in columns instead of rows in pdmv_children before merging).

I This is only possible if the second data dimension is small (i.e., few children per
mother).

Instead, use joinby.

Alexander Ahammer (JKU) Module C: Data management 46 / 56

What joinby does

joinby builds all pairwise combinations within defined groups in the merged
dataset. It’s syntax looks as follows:

joinby varlist using filename

where varlist defines groups in the data.

Example:

Dataset 1

id var1 var2

1 · · · · · ·
2 · · · · · ·

Dataset 2

id child_id var3

1 x1 · · ·
1 x2 · · ·
2 y1 · · ·

Dataset 1+2 (after joinby on id)

id child_id var1 var2 var3

1 x1 · · · · · · · · ·
1 x2 · · · · · · · · ·
2 y1 · · · · · · · · ·

Alexander Ahammer (JKU) Module C: Data management 47 / 56

. use "D:\Dropbox\pdmv\data\pdmv_children.dta", clear
([PDMV Ahammer 2018] all births between 1971-2007 for Austrian women)
. list if id_mother == 166

id_child id_mot~r child_~b

396068. 4497187 166 1977
396069. . 166 1977
396070. 10041105 166 1981

. use if p_female == 1 using "data/pdmv_sl.dta", clear
(All sick leaves 2004-2012 for 10% sample of Austrian employees)
. g double id_mother = id_worker
. list id_worker sl_start sl_end if id_mother == 166

id_wor~r sl_start sl_end

1. 166 09nov2011 13nov2011
2. 166 04jun2011 11jun2011
3. 166 20oct2012 23oct2012

. joinby id_mother using "D:\Dropbox\pdmv\data\pdmv_children.dta", _merge(_kidsjoin) unm(m)

. sort id_mother id_child

. list id_worker sl_start sl_end *child* if id_mother == 166, sepby(id_child)

id_wor~r sl_start sl_end id_child child_~b

1. 166 20oct2012 23oct2012 4497187 1977
2. 166 04jun2011 11jun2011 4497187 1977
3. 166 09nov2011 13nov2011 4497187 1977

4. 166 20oct2012 23oct2012 10041105 1981
5. 166 04jun2011 11jun2011 10041105 1981
6. 166 09nov2011 13nov2011 10041105 1981

7. 166 09nov2011 13nov2011 . 1977
8. 166 20oct2012 23oct2012 . 1977
9. 166 04jun2011 11jun2011 . 1977

Alexander Ahammer (JKU) Module C: Data management 48 / 56

What joinby does

In the last example you saw how to use joinby to combine two datasets
where each contains multiple entries for id_mother.

In fact we may have multiple sick leaves per mother in pdmv_sl and possibly
multiple children in pdmv_children.

Mother 166 has had 3 sick leaves and 3 children, she will therefore have 3× 3
obs in the resulting dataset.

In joinby you should always specify the unmatched() option, which
specifies how Stata treats observations that cannot be matched between the
joined datasets:

I unm(master) keeps only unmatched obs from the master data in memory.
I unm(using) keeps only unmatched obs from the using data.
I unm(both) keeps both unmatched obs from both the master and using data.
I unm(none) drops all unmatched obs.

Alexander Ahammer (JKU) Module C: Data management 49 / 56

C.4

Further data transformation commands

Alexander Ahammer (JKU) Module C: Data management 50 / 56

expand

You may remember the expand command, we have used it in the past.

With expand you can copy each observation in the data by a certain factor.
I expand c copies each observation by a constant c .
I expand var copies each obs by the value of var .

This can sometimes be helpful, especially if you work with spell data.
I Example: If you make an event study based on spell data, you may want to

expand the data by the number of pre- and post-event time periods you want to
analyze (see module B).

I Example: You have data on employment spells which you want to convert into a
yearly panel. In this case you have to expand the data first by the number of
years each spell spans before collapsing.

I Example: See my solution to the week 6 problem set, where we use expand to
calculate the number of days worked per quarter based on spell data.

help expand

Alexander Ahammer (JKU) Module C: Data management 51 / 56

expand

. // expand each obs by the same factor

. use "data/pdmv_sl.dta", clear
(All sick leaves 2004-2012 for 10% sample of Austrian employees)
. sort id_worker sl_start
. list id_worker sl_start if id_worker <= 276

id_wor~r sl_start

1. 166 04jun2011
2. 166 09nov2011
3. 166 20oct2012
4. 276 15jan2009

. expand 2, gen(_e)
(322,375 observations created)
. sort id_worker sl_start _e
. list id_worker sl_start _e if id_worker <= 276, sepby(id_worker sl_start)

id_wor~r sl_start _e

1. 166 04jun2011 0
2. 166 04jun2011 1

3. 166 09nov2011 0
4. 166 09nov2011 1

5. 166 20oct2012 0
6. 166 20oct2012 1

7. 276 15jan2009 0
8. 276 15jan2009 1

Alexander Ahammer (JKU) Module C: Data management 52 / 56

expand

. // expand according to the value of a variable

. use "data/pdmv_sl.dta", clear
(All sick leaves 2004-2012 for 10% sample of Austrian employees)
. sort id_worker sl_start
. g r = int(runiform()*3) + 1 /* generates a random integer */
. list id_worker sl_start r if id_worker <= 276

id_wor~r sl_start r

1. 166 04jun2011 3
2. 166 09nov2011 1
3. 166 20oct2012 2
4. 276 15jan2009 1

. expand r, gen(_e)
(322,481 observations created)
. sort id_worker sl_start _e
. list id_worker sl_start r _e if id_worker <= 276, sepby(id_worker sl_start)

id_wor~r sl_start r _e

1. 166 04jun2011 3 0
2. 166 04jun2011 3 1
3. 166 04jun2011 3 1

4. 166 09nov2011 1 0

5. 166 20oct2012 2 0
6. 166 20oct2012 2 1

7. 276 15jan2009 1 0

Alexander Ahammer (JKU) Module C: Data management 53 / 56

fillin

Suppose you have panel data (as in pdmv_sl). Remember the definition of a
balanced panel: Each i ∈ n observations has exactly T time-series
observations.

Many panels are unbalanced, meaning that each observation may have a
di�erent number of time-series observations Ti ≤ T, Tj < T for some j.

Sometimes you may want to fill-up these obs to create a balanced panel.
I Example: You have data on medical drug usage for 2005–2012, but some patients

do not consume drugs in every year. A balanced panel would require to create
obs for missing years and replacing drug usage with 0 (given that you know you
would indeed observe drug usage if the patient consumed drugs).

I Example: Again, see my solution to the week 6 problem set, where we make a
balanced quarterly panel using the data in pdmv_sl.

This works both with the fillin command or using tsfill after tsset.

help fillin

Alexander Ahammer (JKU) Module C: Data management 54 / 56

cross, stack, separate, xpose

cross forms every pairwise combination of the data in memory with the data
in the using dataset.

I Syntax: cross using usingdata.dta
I help cross

stack allows you to vertically stack the variables in a varlist.
I Syntax: stack x1 x2 x3 x4, into(z1 z2)
I help stack

separate can convert one var into several new vars, either on the basis of a
Boolean condition or in terms of another var given by by() .

I Syntax: separate var1, by(var2)
I help separate

xpose turns observations into variables and vice versa.
I help cross

Alexander Ahammer (JKU) Module C: Data management 55 / 56

Big data issues New helpful commands

=⇒ ftools https://github.com/sergiocorreia/ftools

=⇒ gtools https://gtools.readthedocs.io/en/latest/

Both are available from the SSC archive, so ssc install them!

Alexander Ahammer (JKU) Module C: Data management 56 / 56

https://github.com/sergiocorreia/ftools
https://gtools.readthedocs.io/en/latest/

