Programming, Data Management and Visualization Module C: Data management

Alexander Ahammer

Department of Economics, Johannes Kepler University, Linz, Austria Christian Doppler Laboratory Ageing, Health, and the Labor Market, Linz, Austria

 β version, may still be updated Last updated: Monday 9th December, 2019 (13:31)

Introduction

- In this module cover data validation, we hear briefly about database structures in general, and we learn how to reorganize and combine datasets is Stata.
- At the end of the module, you should know
 - how to validate data through scripted data checking
 - the mechanics of the collapse and reshape commands
 - how to combine datasets with merge, append, and joinby
- The book covers also issues concerning saving and reusing intermediate results, as well as presenting outputs in tables.

 \implies We postpone these topics to module D.

• Big data issues are discussed at different points in this module.

C.1

Data validation

- Preparing data should always start with sanity checking.
 - Do all values of the raw data make sense?
 - > Are there any coding errors that are apparent in the range of data values?
 - Are there numeric values that should be coded as missings?
- Always perform a series of checks on new data you input. This is the start of your data transformation.
- Write another do-file that corrects these errors (don't do this in Excel), and keep both the initial and the final data set separately.
- Your best friends here are describe, summarize, tabulate, and histogram, which provide useful information on imported data.

. su p_age sl_dur e_wage

Variable	Obs	Mean	Std. Dev.	Min	Max
p_age	322,375	36.82896	11.19948	18	65
sl_dur	322,375	6.020889	5.386769	1	44
e_wage	322,375	25994.96	16373.24	.0033333	1144276
. ta p_female					
[worker] =1					
if female	Freq.	Percent	Cum.		
0	192,279	59.64	59.64		
1	130,096	40.36	100.00		
Total	322,375	100.00			
. g year = yo	fd(sl_start)				

. ta year

year	Freq.	Percent	Cum.
2004	444	0.14	0.14
2005	35,650	11.06	11.20
2006	33,631	10.43	21.63
2007	38,242	11.86	33.49
2008	42,408	13.15	46.65
2009	40,596	12.59	59.24
2010	40,211	12.47	71.71
2011	45,379	14.08	85.79
2012	45,814	14.21	100.00

Total

322,375 100.00

. hist e_wage, lcolor("255 69 0") fcolor("255 69 0%30") xsize(6.5) freq /// ylab(, format(%9.0fc) nogrid) xlab(, nogrid) > (bin=55, start=.00333333, width=20805.022)

. gr export "slides/graphs/wagedist.pdf", as(pdf) replace (file slides/graphs/wagedist.pdf written in PDF format)

. // comment these three commands out if you want to download the dataset below

. *net from "http://www.stata-press.com/data/itsp2"

. *net set other data/itsp2

. *net get itsp2-data

. use data/itsp2/census2b.dta, clear

(Version of census2a for data validation purposes)

. des

Contains data from data/itsp2/census2b.dta

obs:	50	Version of census2a for data validation purposes
vars:	5	9 Oct 2015 12:43
size:	1,650	

variable name	storage type	display format	value label	variable label
state region pop medage drate	str14 str7 float float float	%14s %9s %9.0g %9.0g %9.0g		

Sorted by:

. su pop-drate, sep(0)

Variable	Obs	Mean	Std. Dev.	Min	Max
pop	49	4392737	4832522	-9	2.37e+07
medage	50	35.32	41.25901	24.2	321
drate	50	104.3	145.2496	40	1107

Using the assert command

- In the last example based on census data, several anomalies are revealed that have to be corrected.
 - Population data is missing for one state (unlikely in proper census data)
 - \blacktriangleright At least one state has negative population numbers \longrightarrow coding error
 - Maximum of the median age var of 321 \longrightarrow coding error
 - Mean death rate is 104, a value 10 times the mean is unlikely as well
- In your research, you have subject-matter knowledge, which helps you define sensible ranges of values for the vars in your data.
- You may also find the codebook command helpful in identifying data errors.
- Let's write a code now that uses data validation techniques that can be applied for datasets with millions of observations. We use assert to perfom sanity checks → if the code runs without error, all checks are passed.

Using the assert command

```
use data/itsp2/census2b.dta
// check pop
list if !inrange(pop,300000,3e7)
assert inrange(pop,300000,3e7)
// check medage
list if !inrange(medage,20,50)
assert inrange(medage,20,50)
// check drate
su drate
list if !inrange(drate,10,r(mean)*r(sd))
assert inrange(drate,10,r(mean)*r(sd))
```

Correction data mistakes

. use data/itsp2/census2b.dta, clear (Version of census2a for data validation purposes)

. // check pop

. list if !inrange(pop,300000,3e7)

	state	region	pop	medage	drate
4.	Arkansas	South	-9	30.6	99
10.	Georgia	South		28.7	81
15.	Iowa	N Cntrl	0	30	90

```
. assert inrange(pop,300000,3e7)
3 contradictions in 50 observations
assertion is false
r(9);
```

end of do-file

r(9);

. do "C:\Users\ALEXAN_1\AppData\Local\Temp\STDf0a8_000000.tmp"

. su pop					
Variable	Obs	Mean	Std. Dev.	Min	Max
pop	49	4392737	4832522	-9	2.37e+07
. replace pop = r (3 real changes m	(mean) if ! ade)	inrange(pop	,300000,3e7)		
. // check pop . list if !inrang	e(pop,30000	0,3e7)			
. assert inrange(pop,300000,	3e7)			

IMPORTANT There is **no right or wrong way** of correcting such mistakes, imputing the sample mean for non-valid values is only one possibility. You may also impute other values (for example the minimum or the maximum if you want to **censor** a variable, consider **winsorizing** or certain **imputation** techniques, or **dropping** the observations altogether. What option you choose always depends on the particular problem at hand.

Other useful data validation techniques

• Twoway tables with tab can also be helpful. Suppose you have a dataset with medical questionnaires, you may want to check something like

tab pregnant gender

which should display non-zero values only in the female column. You can also use assert pregnant == 1 if gender == "Male", which should not return an error.

- With tabstat you can assess means of continuous variables by realizations of categorical variables.
- You can use duplicates to check for duplicate observations (pro tip for RA's working with the ASSD and GKK data → always check this at the beginning of your do-files).
- Download the user-written code distinct, which returns the distinct number of observations for a specified varlist. This is especially informative with panel data.

Other useful data validation techniques

. use "data/pdmv_sl.dta", clear (All sick leaves 2004-2012 for 10% sample of Austrian employees) . tabstat sl_dur, by(gp_sex) s(mean sd) Summary for variables: sl dur by categories of: gp_sex ([GP] sex) gp_sex mean sd Μ 6.044573 5.400271 W 5.997163 5.350472 Total 6.038739 5.394182 . duplicates list Duplicates in terms of all variables (0 observations are duplicates) . distinct id_worker id_GP id_firm Observations total distinct id_worker 322375 52739 id GP 322375 1033 id_firm 322375 17620

Unit tests

- *Real* programmers write **unit tests** for just about every piece of code. These scripts check whether the piece of code does everything it is expected to do.
- For a program to compile, it must pass all the unit tests. Many bugs are thus caught automatically. A large program will often have as much testing code as program code.
- Econometricians typically don't write unit tests, instead we interactively apply different validation checks to see whether our code produces the right data or regression output.
- This is inefficient \Longrightarrow write unit tests.

Reorganizing data

The collapse command

- With collapse you can make a new dataset from summary statistics.
 Alternatively, you can also use contract to create a dataset of frequencies.
- The syntax of collapse is

```
collapse (stat1) varlist (stat2) varlist ...
```

where stat can be mean, median, min, max, sum, etc. (see the help file). It also allows multiple vars in a by options, which computes the summary statistics of *varlist* for every unique combination of the vars in by.

- varlist can also consist of newvar=oldvar, which is especially helpful if you want to generate different statistics of the same var, or you want to rename the statistic of a var immediately.
- collapse takes the dataset in memory and creates a new dataset containing summary statistics of the original data. This means that the original dataset will vanish unless you store it in memory using preserve.
- We will see how the command works in some of the examples in this module.

The collapse command

. collapse (firstnm) p_female (sum) sl_dur (max) p_age, by(id_worker)

. list in 1/5

	id_wor_r	p_female	sl_dur	p_age
1.	166	1	17	59.83333
2.	276	1	9	55.75
з.	548	1	34	52.66667
4.	579	1	58	59.75
5.	1063	1	47	57.91667

TIPP Here we use the function firstnm, which carries the first non-missing observation of p_female over to the collapsed dataset. Do this only for vars that are **constant** across obs in the by-group.

Alternatively, preserve the data, make a dataset containing only one obs per id_worker with all constant vars, save it, and restore the original data. Then collapse the statistics you need and merge back the dataset from before.

Big data issues Collapse and big data

- Big data often consist of millions of rows of information (e.g., all sick leaves in Upper Austria, all medication prescriptions, all employment spells) and/or perhaps (tens of) thousands of columns (large N / large K)
- It is impossible to work with such data (i.e., running regressions) without rearranging them in some shape or form first.
- Typically these data can be aggregated on a meaningful level
 → e.g., aggregate sick leaves to a worker-year panel.
- This can be done with collapse.
- Check this slide set on ftools for a variety of user-written procedures that work faster with big data

collapse vs. fcollapse

Performance

Figure 4: Elapsed time of collapse and fcollapse by num. obs.

Source: Correia (2017), 'ftools: a faster Stata for large datasets'

Module C: Data management

Big data issues Collapse and big data

. g year = yofd(sl_start)

. collapse (count) nosls=sl_start (mean) p_age sl_dur, by(id_worker year)

- . format nosls %9.0f
- . list if id_worker <= 579, sepby(id_worker)

	id_wor_r	year	nosls	p_age	sl_dur
1.	166	2011	2	58.70834	6.5
2.	166	2012	1	59.83333	4
3.	276	2009	1	55.75	9
4.	548	2005	3	49.91667	3.666667
5.	548	2006	2	51	9.5
6.	548	2008	1	52.66667	4
7.	579	2005	3	57.36111	9.666667
8.	579	2006	1	58.75	4
9.	579	2007	3	59.25	8.333333

Hello. My name is Scott. I have a PhD in Economics and I work for a major Big10 university and I just had to look up the syntax for the reshape command in Stata for the thirty thousandth time.

- reshape is an essential command to use for data transformation. It's syntax is difficult and it often takes multiple runs of debugging to get it working.
- Before we see what it does, you have to understand how Stata distinguishes between **wide** and **long** data formats.
- This is the long format:

. list if id_worker <= 579, sepby(id_worker)

	id_wor_r	year	sl
1.	276	2009	9
2.	548	2005	3.666667
3.	548	2006	9.5
4.	548	2008	4
5.	579	2005	9.666667
6.	579	2006	4
7.	579	2007	8.333333

• This is the wide format:

. list if id_worker <= 579

	id_wor~r	s12005	s12006	s12007	s12008	s12009
1.	276					9
2.	548	3.666667	9.5		4	
3.	579	9.666667	4	8.333333		

- In long format, one datum (i.e., one unique observation) is identified as a combination of id_worker and year, in wide format a datum is identified by a single variable.
- Why would you want to change between those formats?
 - Panel data are typically stored in long format.
 - The wide format is useful to perform rowwise calculations.
 - Graphical representations of results often require one or the other format.

Syntax generally

	loi	ng							
i	j	j stub			wide				
				i	stub 1	stub			
1	1	x_{11}	reshape						
1	2	x_{12}		1	x_{11}	x_{12}			
2	1	x_{21}		2	x_{21}	x_2			
2	2	x_{22}							

• From **long** to **wide** (with *j* being an <u>existing</u> var):

```
reshape wide stub, i(i) j(j)
```

• From **wide** to **long** (with *j* being a <u>new</u> var):

```
reshape long stub, i(i) j(j)
```

• NOTE Use the *string* option if j() *may* contain string values, and be aware that you can use @ if your stubs contain suffixes after the *j*'s.

Stata examples

. // as before, let's create a dataset containing averages sl durs for every worker . collapse (mean) sl=sl_dur if inrange(year,2005,2009), by(id_worker year) . // now, reshape the data into wide format . reshape wide sl, i(id_worker) j(year) (note: j = 2005 2006 2007 2008 2009)

Data	long	->	wide
Number of obs. Number of variables	108169 3	-> ->	43184 6
j variable (5 values) xij variables:	year	->	(dropped)
5	sl	->	sl2005 sl2006 sl2009

. list if id_worker <= 1803, sep(0)

	id_wor_r	s12005	s12006	s12007	s12008	s12009
1.	276					9
2.	548	3.666667	9.5		4	
з.	579	9.666667	4	8.333333		
4.	1063	12			8	8
5.	1085			5.5		
6.	1689	8.666667			9	
7.	1738	4	3	3.5	1	
в.	1788	28	7.5			
9.	1803		19.5	13		

Stata examples

. // suppose our using data is in wide format, as on the last slide, but the sl vars contain suffixes . foreach v of varlist sl* { 2 rename `v´ `v´ total 3. } . // then the reshape command back to long format has to look like this: . reshape long sl0_total, i(id_worker) j(y) /* with year being a newly generated var */ (note: i = 2005 2006 2007 2008 2009) Data wide -> long Number of obs 43184 -> 215920 Number of variables 6 -> 3 i variable (5 values) -> у xij variables: sl2005_total sl2006_total ... sl2009_total-> sl_total

. list if id_worker <= 548, sepby(id_worker)

	id_wor_r	У	sl_total
1. 2. 3. 4. 5.	276 276 276 276 276 276	2005 2006 2007 2008 2009	9
6. 7. 8. 9. 10.	548 548 548 548 548 548	2005 2006 2007 2008 2009	3.666667 9.5 4

Combining data

Relational databases in general

- A **database** is simply a set of related datasets. So far we have encountered only single datasets, but these are parts of much larger databases.
 - pdmv_sl.dta is drawn from the Austrian Social Security Database
 - UA_population.csv is from the Statistics Austria database
- A relational database organizes one or more datasets (or 'relations') consisting of columns and rows, with a unique key identifying each row.
 - ▶ In CS, rows are also called records or tuples. Columns are also called attributes.
- Generally, each table/relation/dataset represents one **entity type** (such as workers, sick leaves, or districts). The rows represent **instances** of that type of entity (one sick leave), and columns represent **values** attributed to that instance (start of the sick leave, information on the worker, and so on).
- Different datasets can be linked through the **unique keys.**
 - What is the unique key in pdmv_sl.dta?

Big data issues Store data in relational databases!

zip	district	zip_pop	district_pop
4020	401	107236	182304
4040	401	75068	182304
	401		182304
4400	402	30509	38347
	402		38347

• Avoid storing data in tables like this one:

• Instead, set up a relational database:

zip	district	pop	district	pop
4020 4040	401 401	107236 75068	401 402	182304 38347
4400	402	30509		

- Now there is no ambiguity —> no missing zip codes and no conflicting definitions. If the pop of a district is required, the second data can be used directly. The database is self-documenting, and each table has a unique key.
- These datasets can easily be combined through their unique keys.

Types of relations in databases

Consider two datasets A and B. Depending on the information in these datasets, more specifically **how many obs are attached to every unique id**, these datasets can be related in the following ways:

- A **one-to-one** (1:1) relationship between A and B exists, when one row in table A may be linked with only one row in table B, and vice versa.¹
- A **one-to-many** (1:m) relationship exists, when one row in table A may be linked with many rows in table B, but one row in table B is linked to only one row in table A (note the equivalence with a many-to-one relationship).
- A **many-to-many** (m:m or n:m) relationship is given when multiple entries in *A* relate to multiple entries in *B*. Typically we would transform one of the datasets before merging, in order to get a 1:m relationship. More on that later.

¹Note the conditional *may be*: These relationships can exist, but they don't necessarily have to. For example, there may be rows in A that cannot be mapped to any row in B, yet the datasets may still be in a 1:1, 1:m, or m:m relationship.

New datasets

- We consider three new datasets in this module:
 - pdmv_children.dta
 - pdmv_pnat.dta
 - pdmv_addinfo.dta

pdmv_sl

Sick leaves 2005-2012 for 10% sample of Upper Austrian workers

Unique ID:

id_worker sl_start

pdmv addinfo

Diagnosis and living place for all sick leaves in Upper Austria (2005-2012).

UniqueID: id_worker sl_start

pdmv pnat

Nationalities of all UA workers that had a sick leave (2005-2012).

Unique ID:

id_worker

pdmv children

All children along with their birth year for mothers in Austria, 1972-2009.

Unique ID:

id_mother

Combine datasets

Dataset 1

id	var1	var2	id	var1
111			121	
112	• • •		122	• • •
113			123	

Dataset 2

Dataset 3

ic	1	var3	var4
11	1		
11	2	•••	•••
11	3		

Combine datasets

- Note that these three datasets contain different information —> Dataset 1 and Dataset 2 contain the same vars for different id's, while Dataset 3 contains the same id's but different vars as in Dataset 1.
- These are simple cases, because one id always identifies one **unique observation**, or equivalently, per unique observation (id) there is only one row with information.
- As long as id has the same name and data type (string vs. numeric) across the two datasets, 1 and 2 can be combined using the append command. To combine 1 and 3 we would use the merge command.
- In Stata, the dataset in memory is called the **master** data, while the dataset which is to be merged or appended is called **using** data.

Append data

- Sometimes you have to download datasets from different years or different entities separately (e.g., survey waves). Combining these datasets into one would be a task for append. [Manual link: Append]
- In terms of the example above, it would mean to simply **stack** Dataset 1 and Dataset 2:

id	var1	var2
111		
112		
113		
121	•••	• • •
122	•••	• • •
123		

• Importantly, it is no problem if one of the datasets contains different vars apart from id. In this case Stata attaches missings for id's that don't have information on the var which is non-existing in the original data.

Append data

Datasets with different vars

Dataset 1

Dataset 2

id	var1	var2	id	var1	var2	var3
111			121			
112	• • •		122			
113		•••	123			

Dataset 1+2 (after append)

id	var1	var2	var3
111			
112			
113			
121			
122			
123			

Append data

In Stata

```
. // store data by years for illustrative purposes
. count
  322,375
. forval i = 2004/2012 {
           preserve
  2.
  з.
           keep if year == `i'
            qui save data/tmp_`i´.dta, replace
  4
  5.
             restore
 6. }
(321,931 observations deleted)
(286,725 observations deleted)
(288,744 observations deleted)
(284,133 observations deleted)
(279,967 observations deleted)
(281.779 observations deleted)
(282,164 observations deleted)
(276,996 observations deleted)
(276.561 observations deleted)
. // append data again
. use data/tmp_2004.dta, clear
(All sick leaves 2004-2012 for 10% sample of Austrian employees)
. forval i = 2005/2012 {
             qui append using data/tmp_`i'.dta
  2.
  3
             erase data/tmp_`i'.dta
  4. }
. count
  322.375
. erase data/tmp_2004.dta
```

Merge data

- Now consider the case where you have two datasets, and both contain different information on a unique identifier that you want to combine into a single dataset.
 [Manual link: Merge]
- For example, you may want to combine Dataset 1 and Dataset 3 from above:

id	var1	var2	var3	var4
111				
112				
113			•••	•••

• This is a simple 1:1 merge. In Stata, such a merge can be done using the merge command. Its syntax is as follows:

```
merge 1:1 varlist using filename
```

where *varlist* is the common unique identifier in both datasets.

- The newly introduced dataset pdmv_addinfo.dta also allows a 1:1 merge, because it contains exactly one observation for every id_worker sl_start combination (i.e., every individual sick leave) as well.
- Let's try the merge and examine what it does:

erge 1:1 id_worker	l_start using "D:\Dropbox\pdmv\data\pdmv_addinfo.dta'
Result	# of obs.
not matched	7,139,443
from master	0 (_merge==1)
from using	7,139,443 (_merge==2)
matched	322,375 (_merge==3)

- First, we observe that the data contains now 7,461,818 obs. Browsing the data, we find that 7,139,443 obs have information on the newly added vars sl_diag p_plz p_gkz, but not on the original vars.
- Second, we observe that Stata generates a new variable called _merge. This variable takes on
 - ▶ 1 if an observation was found only in the master dataset (pdmv_addinfo),
 - 2 if it was found only in the using dataset, or
 - 3 if it was found in both datasets.

1:1 merges

- This means that a **successful merge** is flagged with _merge == 3. Obs with _merge == 1 appear only in the master data, such obs do not exist as all worker-sick leave combinations also have entries in the master data.
- Why are there 7m obs in the using data that could not be found in pdmv_sl.dta? Remember the data description → this is only a 10% sample of all workers!
- In most applications, it makes sense to automatically drop obs with _merge
 = 2, and then drop the _merge var altogether.

. merge	e 1:1 id_worker s	l_start using "D:\Dropb	ox\pdmv\data\pdmv_addinfo.dta"
Res	ult	# of obs.	
not	matched	7,139,443	
	from master	0	(_merge==1)
	from using	7,139,443	(_merge==2)
mat	ched	322,375	(_merge==3)

```
. drop if _merge == 2
(7,139,443 observations deleted)
. drop _merge
```

If you want to keep _merge for future reference, give it a different name!

1:1 merges

-

	id_wor~r	sl_start	sl_diag	p_plz	p_gkz
1.	166	04jun2011	J069	4331	411
2.	166	09nov2011	J040	4331	411
з.	166	20oct2012	J40	4331	411
4.	276	15jan2009	J069	4470	410
5.	548	18feb2005	J10	4770	414
6.	548	04jul2005	M544	4770	414
7.	548	05dec2005	195	4770	414
8.	548	09aug2006	J02	4770	414
9.	548	28aug2006	M53	4770	414
10.	548	10apr2008	M5384	4770	414
11.	579	24jan2005	M53	4600	403
12.	579	02mar2005	J068	4600	403
13.	579	02dec2005	M53	4600	403
14.	579	10oct2006	J068	4600	403
15.	579	11jan2007	J068	4600	403
16.	579	19jan2007	J068	4600	403
17.	579	12oct2007	J068	4600	403
18.	1063	01apr2005	M652	4040	401
19.	1063	22sep2008	J068	4040	401
20.	1063	01oct2008	M199	4040	401
21.	1063	08sep2009	M771	4040	401
22.	1063	07apr2010	M545	4040	401
23.	1063	27oct2010	M5494	4040	401

. list id_worker sl_start sl_diag p_plz p_gkz if id_worker <= 1063, sepby(id_worker)

1:1 merges

- Note that in this example, it appears that p_plz and p_gkz do not change across sick leaves. If this is really the case, it would make more sense to store the information on living place in a **separate database which contains only one obs per unique id** id_worker.
- However, since the zip code is stored in numeric format, we can easily check whether it contains different values across id_worker's by computing its sd:

. egen sd_plz = sd(p_plz), by(id_worker) (10051 missing values generated)						
. su sd_plz						
Variable	Obs	Mean	Std. Dev.	Min	Max	
sd_plz	312,324	23.79653	126.7822	0	3852.318	

• Thus, if people move, their living place changes between sick leaves. This is the reason why I stored p_plz and p_gkz in this data table.

Other merges

• Instead of 1:1 merges, Stata can also perform m:1 (or 1:m) and m:m merges, these *joins* are also the only part of the syntax you have to change.

merge m:1 varlist using filename
merge 1:m varlist using filename
merge m:m varlist using filename

• Avoid m:m merges at all cost!

- An m:m relationship means you have multiple observations in both datasets for some values of the merge key variable(s).
- Usually the result of merging two datasets that both have more than one value of the merge key variable(s) is unpredictable, because it **depends on the sort** order of the datasets.
- Repeated execution of the same do-file will likely result in a different number of cases in the result dataset without any error indication. A m:m merge has no unique outcome. When it is encountered, it usually results from a coding error in one of the files.
- Use joinby instead, which generates all possible pairwise combinations within groups (see later).

m:1 merges

• Suppose you want to extend the sick leave data with workers' nationalities. These datasets are in a m:1 relationship, as one id_worker appears only once in pdmv_pnat.dta, but every worker in pdmv_pnat.dta can appear many times in pdmv_sl.dta.

erge m:1 id_worker using	"D:\Dropbox\pdmv\d	ata\pdmv_pnat.dta"
Result	# of obs.	
not matched	721,213	
from master	0	(_merge==1)
from using	721,213	(_merge==2)
matched	322,375	(_merge==3)

```
. drop if _merge == 2
(721,213 observations deleted)
. drop _merge
```

 Again, we drop the 721,213 workers that have nationalities but are not in our sick leave data (_merge == 2). We have 322,375 perfect matches, and no obs. in the sick leave data that do not appear in the nationalities data (although they can have missings).

m:1 merges

. list id_worker sl_start p_nat if id_worker <= 1063, sepby(id_worker)

	id_wor_r	sl_start	p_nat
1.	166	09nov2011	
2.	166	04jun2011	
3.	166	20oct2012	
4.	276	15jan2009	Österreich
5.	548	09aug2006	Österreich
6.	548	28aug2006	Österreich
7.	548	04jul2005	Österreich
8.	548	10apr2008	Österreich
9.	548	18feb2005	Österreich
10.	548	05dec2005	Österreich
11.	579	10oct2006	Österreich
12.	579	11jan2007	Österreich
13.	579	12oct2007	Österreich
14.	579	02mar2005	Österreich
15.	579	24jan2005	Österreich
16.	579	19jan2007	Österreich
17.	579	02dec2005	Österreich
19	1063	072222010	Östorrojch
10.	1063	22gap2008	Österreich
20	1063	2256p2008	Österreich
20.	1063	0100502009	Österreich
21.	1063	010002008	Österreich
22.	1063	210002010	Österreich
23.	1063	01apr2005	Usterreich

Big data issues Merging data

Merging data can be extremely **memory-intensive** with big datasets. If your data matrix is already huge, its dimension grows even further when you attempt a merge. However, there are certain tricks you can use:

- Open a second Stata instance and load the using data. Check whether you can collapse the information you need first, or reduce its size by some other means.
- Use the keepusing option to merge only variables you really need from the using data. This can often make the difference between a successful merge and Stata returning a memory error.
- Sometimes, there may also be vars in the **master data you don't necessarily need**. Drop these before the merge.
- Specify keep(1 3) to save some additional time.
- If possible, increase Stata's matsize.

m:m merges

- Sometimes you have to combine datasets where multiple entries in the using data refer to multiple entries in the master data.
- For example, you may want to match data on all children of women in the data from pdmv_children.
- Forget about merge m:m.
- Sometimes it's viable to reshape one of the data sets first (for example, put children in columns instead of rows in pdmv_children before merging).
 - This is only possible if the second data dimension is small (i.e., few children per mother).
- Instead, use joinby.

What joinby does

• joinby builds all pairwise combinations within defined groups in the merged dataset. It's syntax looks as follows:

```
joinby varlist using filename
```

Detecto

where *varlist* defines groups in the data.

• Example:

Datase	t 1
var1	var2

Dataset 1+2 (after joinby on id)

id	child_id	var1	var2	var3
1	X1			
1	X2	•••	•••	• • •
2	V1			

. use "D:\Dropbox\pdmv\data\pdmv_children.dta", clear

([PDMV Ahammer 2018] all births between 1971-2007 for Austrian women)

. list if id_mother == 166

	id_child	id_mot_r	child_~b
396068.	4497187	166	1977
396069.		166	1977
396070.	10041105	166	1981

. use if p_female == 1 using "data/pdmv_sl.dta", clear (All sick leaves 2004-2012 for 10% sample of Austrian employees)

. g double id_mother = id_worker

. list id_worker sl_start sl_end if id_mother == 166

	id_wor_r	sl_start	sl_end
1.	166	09nov2011	13nov2011
2.	166	04jun2011	11jun2011
3.	166	20oct2012	23oct2012

. joinby id_mother using "D:\Dropbox\pdmv\data\pdmv_children.dta", _merge(_kidsjoin) unm(m)

. sort id_mother id_child

. list id_worker sl_start sl_end *child* if id_mother == 166, sepby(id_child)

	id_wor_r	sl_start	sl_end	id_child	child_~b
1. 2.	166 166	20oct2012 04jun2011	23oct2012 11jun2011 12now2011	4497187 4497187 4497187	1977 1977 1977
4. 5.	166 166	20oct2012 04jun2011	23oct2012 11jun2011	10041105 10041105	1981 1981
6. 7. 8.	166 166 166	09nov2011 09nov2011 20oct2012	13nov2011 13nov2011 23oct2012	10041105	1981 1977 1977
9.	166	04jun2011	11jun2011		1977

What joinby does

- In the last example you saw how to use joinby to combine two datasets where each contains multiple entries for id_mother.
- In fact we may have multiple sick leaves per mother in pdmv_sl and possibly multiple children in pdmv_children.
- Mother 166 has had 3 sick leaves and 3 children, she will therefore have 3 × 3 obs in the resulting dataset.
- In joinby you should always specify the unmatched() option, which specifies how Stata treats observations that cannot be matched between the joined datasets:
 - unm(master) keeps only unmatched obs from the master data in memory.
 - unm(using) keeps only unmatched obs from the using data.
 - unm(both) keeps both unmatched obs from both the master and using data.
 - unm(none) drops all unmatched obs.

C.4

Further data transformation commands

expand

- You may remember the expand command, we have used it in the past.
- With expand you can copy each observation in the data by a certain factor.
 - expand c copies each observation by a constant c.
 - expand var copies each obs by the value of var.
- This can sometimes be helpful, especially if you work with spell data.
 - Example: If you make an event study based on spell data, you may want to expand the data by the number of pre- and post-event time periods you want to analyze (see module B).
 - Example: You have data on employment spells which you want to convert into a yearly panel. In this case you have to expand the data first by the number of years each spell spans before collapsing.
 - Example: See my solution to the week 6 problem set, where we use expand to calculate the number of days worked per quarter based on spell data.
- help expand

expand

```
. // expand each obs by the same factor
```

```
. use "data/pdmv_sl.dta", clear
```

(All sick leaves 2004-2012 for 10% sample of Austrian employees)

```
. sort id_worker sl_start
```

```
. list id_worker sl_start if id_worker <= 276
```

	id_wor~r	sl_start
1. 2. 3. 4.	166 166 166 276	04jun2011 09nov2011 20oct2012 15jan2009

```
. expand 2, gen(_e)
```

(322,375 observations created)

```
. sort id_worker sl_start _e
```

. list id_worker sl_start _e if id_worker <= 276, sepby(id_worker sl_start)

	id_wor_r	sl_start	_e
1.	166	04jun2011	0
2.	166	04jun2011	1
3.	166	09nov2011	0
4.	166	09nov2011	1
5.	166	20oct2012	0
6.	166	20oct2012	1
7.	276	15jan2009	0
8.	276	15jan2009	1

expand

```
. list id_worker sl_start r if id_worker <= 276
```

	id_wor~r	sl_start	r
1.	166	04jun2011	3
2.	166	09nov2011	1
3.	166	20oct2012	2
4.	276	15jan2009	1

. expand r, gen(_e) (322,481 observations created)

. sort id_worker sl_start _e

```
. list id_worker sl_start r _e if id_worker <= 276, sepby(id_worker sl_start)
```

	id_wor_r	sl_start	r	_e
1.	166	04jun2011	3	0
2.	166	04jun2011	3	1
3.	166	04jun2011	3	1
4.	166	09nov2011	1	0
5.	166	20oct2012	2	0
6.	166	20oct2012	2	1
7.	276	15jan2009	1	0

fillin

- Suppose you have panel data (as in pdmv_sl). Remember the definition of a balanced panel: Each $i \in n$ observations has **exactly** T time-series observations.
- Many panels are unbalanced, meaning that each observation may have a different number of time-series observations T_i ≤ T, T_j < T for some j.
- Sometimes you may want to fill-up these obs to create a **balanced panel**.
 - Example: You have data on medical drug usage for 2005–2012, but some patients do not consume drugs in every year. A balanced panel would require to create obs for missing years and replacing drug usage with 0 (given that you know you would indeed observe drug usage if the patient consumed drugs).
 - Example: Again, see my solution to the week 6 problem set, where we make a balanced quarterly panel using the data in pdmv_sl.
- This works both with the fillin command or using tsfill after tsset.
- help fillin

cross, stack, separate, xpose

- cross forms every pairwise combination of the data in memory with the data in the using dataset.
 - Syntax: cross using usingdata.dta
 - ▶ help cross
- stack allows you to vertically stack the variables in a varlist.
 - Syntax: stack x1 x2 x3 x4, into(z1 z2)
 - help stack
- separate can convert one var into several new vars, either on the basis of a Boolean condition or in terms of another var given by by().
 - Syntax: separate var1, by(var2)
 - help separate
- xpose turns observations into variables and vice versa.
 - ▶ help cross

Big data issues New helpful commands

User's corner: ftools and gtools

Do you need to perform data management tasks or compute summary statistics with very large datasets? If so, and if you find yourself wishing you could do these things more quickly, you won't want to miss the solutions provided in the community-contributed **fools** and **gtools** suites.

ftools, written by Sergio Correia, includes commands such as fcollapse for creating datasets of summary statistics, fmerge for merging datasets with one-to-one or many-to-one matching, and flevelsof for identifying distinct levels of a variable. The ftools suite also includes a Mata class for working with factors. The Stata commands in ftools are based on this Mata class. You can use it to implement your own commands too. ftools is available from the Statistical Software Components (SSC) archive, and you can read more about these commands in Sergio's sitelies from his presentation at the 2017 Stata Conference and his GitHub page.

gtools, by Mauricio Caceres, includes commands for quickly creating datasets of summary statistics (gcollapse), identifying distinct levels of a variable (glevelsof), and much more. gtools uses a C plugin and is even faster than ftools for tasks that can be performed using both suites of commands. gtools is available from the Statistical Software Components (SSC) archive, and you can read all about these commands here.

- mission ==> ftools https://github.com/sergiocorreia/ftools
- >> gtools https://gtools.readthedocs.io/en/latest/

Both are available from the SSC archive, so ssc install them!