
Programming, Data Management and Visualization
Module B: Programming preliminaries

Alexander Ahammer

Department of Economics, Johannes Kepler University, Linz, Austria
Christian Doppler Laboratory Ageing, Health, and the Labor Market, Linz, Austria

γ version, final
Last updated: Monday 2nd December, 2019 (11:17)

Alexander Ahammer (JKU) Module B: Programming preliminaries 1 / 53

Introduction

In this module we talk more specifically about programming. We cover
functions, macros, lists, scalars, and matrices.

You should already be familiar with functions. Macros and scalars are often
overlooked, although familiarity is useful to write do-files more e�ciently.

In the end you will (hopefully)
I understand varlists, numlists, and if and in qualifiers
I know how to handle missing data
I be familiar with functions for use with generate
I be familiar with the capabilities of egen
I know how to use by-groups e�ectively
I understand the use of local and global macros
I understand how to use scalars
I know how to use matrices

Alexander Ahammer (JKU) Module B: Programming preliminaries 2 / 53

B.1

Lists and logical qualifiers

Alexander Ahammer (JKU) Module B: Programming preliminaries 3 / 53

varlists

Many Stata commands accept a varlist, a list of one or more variables that can
contain variable names or wild cards, e.g.,

I * is an arbitrary set of characters
I ? is a single arbitrary character
I - can be used to specify a hyphenated list

Make sure to be aware of the order of variables (e.g., for a hyphenated list), it
is shown in the variables window and can be checked with describe.

. des p_* sl_* e_start-e_tenure
storage display value

variable name type format label variable label

p_age float %9.0g [worker] age in years
p_female byte %8.0g [worker] =1 if female
p_educ byte %27.0g educ [worker] education
sl_start int %td [sick leave] start date
sl_end int %td [sick leave] end date
sl_dur byte %9.0g [sick leave] duration
e_start int %d [emp] start date
e_end int %d [emp] end date
e_class byte %19.0g classlab [emp] occupation
e_tenure int %9.0g [emp] job tenure

Alexander Ahammer (JKU) Module B: Programming preliminaries 4 / 53

numlists

A numlist is a list of numeric arguments which can be provided in several
ways.

I It can be spelled out explicitly: 0.5 1 1.5 2 2.5 3

I It can involve a range of values, such as 1/4 or -3/3 (these lists would include
the integers between those limits)

I You can also specify 10 15 to 30 or, equivalently, 10 15:30 which would
count from 10 to 30 by 5s.

I You can count by steps, for example, 1(2)9, which is a list of the first five odd
integers, or 9(-2)1, which is the same list in reverse order. Square brackets can
be used instead of parentheses.

Avoid commas inside numlists, which will cause errors. In other languages an
interval from 1 to 10 may be spelled 1,10 — in Stata it’s 1/10.

Alexander Ahammer (JKU) Module B: Programming preliminaries 5 / 53

if exp and in range qualifiers

By default, Stata commands operate on all observations in memory. Almost
all commands, however, accept qualifiers that restrict the command to a
subset of observations.

I if exp for logical conditions
I in range for observation numbers

. su e_wage in 1/10 /* average wage ONLY for the first 10 observations */
Variable Obs Mean Std. Dev. Min Max

e_wage 10 13701.51 6465.033 8471 28529
. su e_wage if p_female == 1

Variable Obs Mean Std. Dev. Min Max

e_wage 130,096 19632.96 11493.88 .0033333 323810.7

Alexander Ahammer (JKU) Module B: Programming preliminaries 6 / 53

Missing data

Stata possesses 27 numeric missing value codes, the system missing value .
and 26 others from .a to .z.

I Possible to indicate di�erent reasons for missing values.
I E.g., .r can me used to indicate that the person refused to answer.

IMPORTANT Missings are treated as very large positive numbers!
I age > 60 is true whenever age has a value greater than 60 or is missing.
I Important when generating dummy variables!
I g age_plus60 = age > 60 & !missing(age)

Use the missing() function, which returns 1 if any of its arguments is
missing and 0 otherwise. You can negate it with !, i.e., !missing().

Always check whether a variable has missings before manipulating it or
performing computations!

Alexander Ahammer (JKU) Module B: Programming preliminaries 7 / 53

Missing data

Typically Stata omits observations with missing data from any computation
(−→ casewise deletion). For generate and replace, missing values are
propagated so that any function of missing data is missing as well.

I Some exceptions exist. For example, functions max(), min(), and the egen
rowwise functions ignore missing values!

I For example, rowmean(x1,x2,x3) will only return missing when all three vars
are missing, otherwise it will compute the mean using only the non-missing vars.

For strings, the empty or null string "" is taken as missing. The missing()
function can be used as well.

The commands mvdecode and mvencode can be helpful when you want to
recode certain numeric values (e.g., 99) as missing.

More information in the manual
I help missing values [12.2.1 Missing values]
I help mvencode

Alexander Ahammer (JKU) Module B: Programming preliminaries 8 / 53

https://www.stata.com/manuals14/u12.pdf

Missing data

. replace p_educ = .m if missing(p_educ)
(33,286 real changes made, 33,286 to missing)
. list p_educ in 1/5

p_educ

1. Lehre
2. Lehre
3. Lehre
4. .m
5. Pflichtschule

. ta p_educ, nola
[worker]

education Freq. Percent Cum.

0 1,231 0.43 0.43
1 37,108 12.84 13.26
2 122,264 42.29 55.55
3 50,449 17.45 73.01
4 59,636 20.63 93.63
5 18,401 6.37 100.00

Total 289,089 100.00
. * 289,089 non-missing obs.
. count if p_educ >= 0 /* missings are large numbers! */

322,375
. count if !missing(p_educ)

289,089

Alexander Ahammer (JKU) Module B: Programming preliminaries 9 / 53

B.2

Functions

Alexander Ahammer (JKU) Module B: Programming preliminaries 10 / 53

Helpful functions for the generate command

Fundamental commands for data transformation: generate (create new
vars) and replace (change contents of existing vars).

inlist() and inrange() can be particularly helpful.
I inlist() returns 1 if the variable matches one of the elements of the list.
I inrange() returns 1 if the values of a variable fall within a real interval

round(), int(), or floor() can be useful when integers instead of
decimal values are needed (for example to generate categorial vars).

sum() produces cumulative or running sums (as opposed to egen’s
total() function).

Alexander Ahammer (JKU) Module B: Programming preliminaries 11 / 53

Helpful functions for the generate command

. g f_ind_farm = inlist(f_industry,1,4,29) /* also works with strings! */

. g p_age_mid = inrange(p_age,25,45)

. g p_age_cat = round(p_age)

. g sl_dur_sum = sum(sl_dur)

. list f_ind_farm p_age_mid p_age p_age_cat sl_dur sl_dur_sum in 1/10, sep(0)

f_ind_~m p_age_~d p_age p_age_~t sl_dur sl_dur~m

1. 0 0 58.5 59 8 8
2. 0 0 58.91667 59 5 13
3. 0 0 59.83333 60 4 17
4. 0 0 55.75 56 9 26
5. 0 0 49.5 50 3 29
6. 0 0 49.91667 50 1 30
7. 0 0 50.33333 50 7 37
8. 0 0 51 51 12 49
9. 0 0 51 51 7 56

10. 0 0 52.66667 53 4 60

Alexander Ahammer (JKU) Module B: Programming preliminaries 12 / 53

Recap Using if exp with indicator vars

A key element of data preparation is generating indicator (dummy) variables,
a var that takes on (0, 1) depending on whether a condition is satisfied.

Dummy vars are generated according to a Boolean condition; an expression
that evaluates to true (1) or false (0) for every obs in the data.

Always take care of missing values! The safe way is to always use the
missing() function irrespective of whether the var actually has missings.

Suppose we want to generate a var indicating whether a person is a blue
collar worker in pdmv_sl.dta. There are two ways of doing that:

(1) The tedious way

g e_bc = .
replace e_bc = 1 if e_class == 1 & !missing(e_class)
replace e_bc = 0 if e_class != 1 & !missing(e_class)

(2) The fast and e�cient way

g e_bc = e_class == 1 if !missing(e_class)

Alexander Ahammer (JKU) Module B: Programming preliminaries 13 / 53

The cond() function

You may want to code a variable as a if a condition is true and b if that
condition is false. In this case you use the cond(x,a,b) function.

I x is the condition to be tested
I a is the result when true
I b is the result when false

Suppose you want to generate a categorical variable which is 1 when the daily
wage of a worker is above EUR 2,500 and 2 else.

g e_highwage = cond(e_wage/12 > 2500,1,2)
la def wageval 1 "m wage > 2,500" 2 "m wage <= 2,500"
la val e_highwage wageval

=⇒ Saves time because you don’t have to generate the parameter you want to
condition on (i.e., the monthly wage) separately.

Conditions can also be nested. That is, the second and third argument can be
additional cond() functions.

Alexander Ahammer (JKU) Module B: Programming preliminaries 14 / 53

The cond() function

. g e_highwage = cond(e_wage/12 > 2500,1,2)

. la def wageval 1 "m wage > 2,500" 2 "m wage <= 2,500"

. la val e_highwage wageval

. tabstat sl_dur, by(e_highwage) s(mean sd)
Summary for variables: sl_dur

by categories of: e_highwage
e_highwage mean sd

m wage > 2,500 5.990518 5.14987
m wage <= 2,500 6.036301 5.503043

Total 6.020889 5.386769

Alexander Ahammer (JKU) Module B: Programming preliminaries 15 / 53

Recoding discrete and continuous vars

recode creates a new variable based on the coding of an existing categorical
variable. Use it to combine data transformations that involve many similar
statements.

Do not use the line-by-line approach as in method (1) below, this is prone to
errors (especially when constructing a large number of statements).

Check help recode for its syntax. You use equality signs to indicate
assignment: oldvalue(s)−→ newvalue. The former allows for varlists.

(1) The ine�cient method

g f_sector = .
replace f_sector = 1 if f_industry == 1
replace f_sector = 2 if f_industry == 4
replace f_sector = 3 if inrange(f_industry,5,18)
...
replace f_sector = . if f_industry == 9

(2) The e�cient method

recode f_industry (1 = 1) (4 = 2) (5/18 = 3) ... (99 = .), gen(f_sector)

Alexander Ahammer (JKU) Module B: Programming preliminaries 16 / 53

Recoding discrete and continuous vars
. fre f_industry, rows(5)
f_industry [firm] NACE95 industry

Freq. Percent Valid Cum.

Valid 1 AA 2381 0.74 0.74 0.74
4 CB 1012 0.31 0.31 1.05
: : : : :
29 OA 12010 3.73 3.73 97.46
99 8182 2.54 2.54 100.00
Total 322375 100.00 100.00

. recode f_industry (1 = 1) (4 = 2) (5/18 = 3) (19 = 4) (20 = 5) (21 = 6) ///
> (22 = 7) (23 = 8) (24 = 9) (25 = 10) (26 = 11) (27 = 12) (28 = 13) ///
> (29 = 14) (99 = .), gen(f_sector)
(319994 differences between f_industry and f_sector)
. la def sectorval 1 "A" 2 "C" 3 "D" 4 "E" 5 "F" 6 "G" 7 "H" 8 "I" 9 "J" ///
> 10 "K" 11 "L" 12 "M" 13 "N" 14 "O"
. la val f_sector sectorval
. fre f_sector, rows(8)
f_sector RECODE of f_industry ([firm] NACE95 industry)

Freq. Percent Valid Cum.

Valid 1 A 2381 0.74 0.76 0.76
2 C 1012 0.31 0.32 1.08
3 D 101082 31.36 32.17 33.25
4 E 3144 0.98 1.00 34.25
: : : : :
11 L 23255 7.21 7.40 88.45
12 M 5573 1.73 1.77 90.23
13 N 18702 5.80 5.95 96.18
14 O 12010 3.73 3.82 100.00
Total 314193 97.46 100.00

Missing . 8182 2.54
Total 322375 100.00

Alexander Ahammer (JKU) Module B: Programming preliminaries 17 / 53

Recoding discrete and continuous vars

For continuous vars it depends on whether you want to use specific threshold
values for categorization.

Generally, you want to avoid defining arbitrary thresholds. However,
sometimes there are institutional circumstances that give rise to thresholds.

I For example, the Austrian unemployment o�ce determines that a mass layo�
(ML) is given when 5 out of 20–100 employees in a firm are laid o�.

I For such cases, it makes sense to use the generate functions recode() or
irecode() to cut a continuous var (e.g., ML size) at specific values.

Without an institutional prior, either cut the variable at constant intervals
(e.g., age in 5 equally sized intervals) or into percentiles.

I egen’s cut function and the at option allows a numlist to define an interval
I you can specify the increments manually in irecode()
I to cut in constant number of intervals, use the generate function autocode
I to cut in percentiles, use the xtile command

Alexander Ahammer (JKU) Module B: Programming preliminaries 18 / 53

Recoding discrete and continuous vars

. su p_age, det
[worker] age in years

Percentiles Smallest
1% 18.91667 18
5% 20.5 18

10% 22 18 Obs 322,375
25% 26.83333 18 Sum of Wgt. 322,375
50% 36.5 Mean 36.82896

Largest Std. Dev. 11.19948
75% 45.91667 65
90% 52.41667 65 Variance 125.4284
95% 55.33333 65 Skewness .1609392
99% 59.08333 65 Kurtosis 1.908309
.
. // cut according to arbitrary thresholds
. g p_agecat = irecode(p_age,25,40,60)
. la def agecatval1 0 "a<=25" 1 "25<a<=40" 3 "40<a<=60" 4 "a>60"
. la val p_agecat agecatval1
. tabstat p_age, s(mean min max) by(p_agecat)
Summary for variables: p_age

by categories of: p_agecat
p_agecat mean min max

a<=25 21.92499 18 25
25<a<=40 32.36783 25.08333 40

2 48.17418 40.08333 60
40<a<=60 61.25673 60.08333 65

Total 36.82896 18 65

Alexander Ahammer (JKU) Module B: Programming preliminaries 19 / 53

Recoding discrete and continuous vars

. // cut in 5-year intervals

. su p_age
Variable Obs Mean Std. Dev. Min Max

p_age 322,375 36.82896 11.19948 18 65
. egen p_agecat3 = cut(p_age), at(18(5)68)
. * if you use 65 as the maximum, you will get 139 missing values
. tabstat p_age, s(mean min max) by(p_agecat3)
Summary for variables: p_age

by categories of: p_agecat3
p_agecat3 mean min max

18 20.89855 18 22.91667
23 25.3849 23 27.91667
28 30.39294 28 32.91667
33 35.48379 33 37.91667
38 40.47929 38 42.91667
43 45.4373 43 47.91667
48 50.33335 48 52.91667
53 55.19573 53 57.91667
58 59.35504 58 62.91667
63 63.88849 63 65

Total 36.82896 18 65

Alexander Ahammer (JKU) Module B: Programming preliminaries 20 / 53

Recoding discrete and continuous vars

. // cut age in 5 equally sized intervals from 18 to 65

. g p_agecat4 = autocode(p_age,5,18,65)

. tabstat p_age, s(mean min max) by(p_agecat4)
Summary for variables: p_age

by categories of: p_agecat4
p_agecat4 mean min max

27.399999 23.01836 18 27.33333
36.799999 31.97151 27.41667 36.75
46.200000 41.52567 36.83333 46.16667
55.599998 50.45601 46.25 55.58333

65 57.82601 55.66667 65

Total 36.82896 18 65

.

. // cut age in 5 quintiles

. xtile p_agecat5 = p_age, n(5)

. tabstat p_age, s(mean min max) by(p_agecat5)
Summary for variables: p_age

by categories of: p_agecat5 (5 quantiles of p_age)
p_agecat5 mean min max

1 22.00738 18 25.16667
2 28.75398 25.25 32.5
3 36.51426 32.58333 40.33333
4 44.13008 40.41667 47.91667
5 52.94069 48 65

Total 36.82896 18 65

Alexander Ahammer (JKU) Module B: Programming preliminaries 21 / 53

Functions for the egen command
egen is a powerful command for data preparation that allows for many
functions which cannot be used with generate and replace.

Most importantly, rowwise calculations can only be done with egen. That is,
calculating sums, averages, standard deviations, extrema, and counts across
variables for every obs.

I Row functions include rowmean(), rowmax(), rowmin(), rowtotal(), etc.
I Wildcards are allowed, rowmean(pop*) instead of rowmean(pop80,pop90).
I Don’t forget−→ missing values are ignored!

Another set of functions calculate certain statistics for by-groups in the data
(discussed in the next subsection).

I count(), min(), max(), total() are typically useful.
I Most allow for by: prefix as well as the , by() option (equivalent!)

Many more functions are available (esp. all basic statistics such as median,
kurtosis, skewness, percentiles, etc.), but also helpful functions for data
preparation (e.g., group or tag). Check help egen for a detailed overview.

It’s also useful to download the user-written egenmore command from SSC,
which extends egen with further functions.

Alexander Ahammer (JKU) Module B: Programming preliminaries 22 / 53

Functions for the egen command

. * average age of workers in the panel

. by id_worker: egen avgage = mean(p_age)

. list id_worker sl_start p_age avgage if inrange(id_worker,1738,1788), sepby(id_worker)

id_wor~r sl_start p_age avgage

30. 1738 18feb2005 38.91667 41.90625
31. 1738 08mar2006 40 41.90625
32. 1738 27dec2006 40.75 41.90625
33. 1738 20feb2007 40.91667 41.90625
34. 1738 27feb2007 40.91667 41.90625
35. 1738 31dec2008 42.75 41.90625
36. 1738 21oct2010 44.58333 41.90625
37. 1738 10aug2012 46.41667 41.90625

38. 1788 25jan2005 53.25 54.02083
39. 1788 06may2005 53.58333 54.02083
40. 1788 21feb2006 54.33333 54.02083
41. 1788 13sep2006 54.91667 54.02083

. * doesn´t make sense, but just in contrast: row min of p_age and avgage

. egen TESTmin = rowmin(p_age avgage)

. list id_worker sl_start p_age avgage TESTmin if id_worker == 1788

id_wor~r sl_start p_age avgage TESTmin

38. 1788 25jan2005 53.25 54.02083 53.25
39. 1788 06may2005 53.58333 54.02083 53.58333
40. 1788 21feb2006 54.33333 54.02083 54.02083
41. 1788 13sep2006 54.91667 54.02083 54.02083

Alexander Ahammer (JKU) Module B: Programming preliminaries 23 / 53

B.3

By-groups and observation numbering

Alexander Ahammer (JKU) Module B: Programming preliminaries 24 / 53

Computations for by-groups

One of Stata’s most useful features is to compute statistics or transform
variables over by-groups. These are identified via the by varlist : prefix.

Using the prefix with one or more categorical variables, a command will be
repeated automatically for each value of the by varlist .

I If varlist contains more than one categorical var, by will be executed on
every possible unique combination of the vars.

By specifying bysort varlist , you can automatically sort the data by
varlist in ascending order.

I This is necessary if you did not sort the data according to varlist first, since
I the command can only be executed if the data are sorted according to by-groups.

It also allows a prefix such as bys varlist1 (varlist2): which first
sorts the data according to varlist1 and varlist2 , and then executes
the command for every distinct realization of the variables in varlist1 .
=⇒ varlist2 is only used for sorting, not to build the by-group!

Alexander Ahammer (JKU) Module B: Programming preliminaries 25 / 53

Computations for by-groups
Executing summarize command for di�erent by-groups

. sort e_class p_female /* data have to be sorted first, otherwise use bys instead of by */

. by e_class p_female: su sl_dur

-> e_class = blue collar worker, p_female = 0
Variable Obs Mean Std. Dev. Min Max

sl_dur 141,464 6.345671 5.54329 1 44

-> e_class = blue collar worker, p_female = 1
Variable Obs Mean Std. Dev. Min Max

sl_dur 54,296 6.546836 5.951415 1 44

-> e_class = white collar worker, p_female = 0
Variable Obs Mean Std. Dev. Min Max

sl_dur 50,815 5.402263 4.753275 1 44

-> e_class = white collar worker, p_female = 1
Variable Obs Mean Std. Dev. Min Max

sl_dur 75,800 5.452731 4.956985 1 44

Alexander Ahammer (JKU) Module B: Programming preliminaries 26 / 53

Computations for by-groups
Data transformations for di�erent by-groups

. g year = yofd(sl_start)

. bys id_worker (year sl_start): egen sl_totaldur = total(sl_dur)

. list id_worker year sl_start sl_dur sl_totaldur if id_worker == 8246, sepby(year)

id_wor~r year sl_start sl_dur sl_tot~r

223. 8246 2006 15feb2006 5 34

224. 8246 2007 19sep2007 3 34

225. 8246 2008 28apr2008 3 34

226. 8246 2010 10feb2010 3 34
227. 8246 2010 11oct2010 5 34
228. 8246 2010 18oct2010 3 34

229. 8246 2011 02may2011 5 34
230. 8246 2011 24oct2011 5 34
231. 8246 2011 10nov2011 2 34

Alexander Ahammer (JKU) Module B: Programming preliminaries 27 / 53

Computations for by-groups
Data transformations for di�erent by-groups

. bys id_worker year (sl_start): egen sl_totaldur2 = total(sl_dur)

. list id_worker year sl_start sl_dur sl_totaldur sl_totaldur2 if id_worker == 8246, sepby(year)

id_wor~r year sl_start sl_dur sl_tot~r sl_tot~2

223. 8246 2006 15feb2006 5 34 5

224. 8246 2007 19sep2007 3 34 3

225. 8246 2008 28apr2008 3 34 3

226. 8246 2010 10feb2010 3 34 11
227. 8246 2010 11oct2010 5 34 11
228. 8246 2010 18oct2010 3 34 11

229. 8246 2011 02may2011 5 34 12
230. 8246 2011 24oct2011 5 34 12
231. 8246 2011 10nov2011 2 34 12

Alexander Ahammer (JKU) Module B: Programming preliminaries 28 / 53

Observation numbering

When you refer to an observation, you can do this with its observation
number. Observation numbers can be altered with sort.

I _N is the highest observation number (total number of obs)
I _n is the current observation number

Under a by-group, _N is the total number of observations or the last
observation in the group and _n is the current observation of the group.

Understanding observation numbering is crucial, possible applications are
manifold. For example,

I Counting entries in a group (e.g., how many sick leaves per person?)
I Identifying first and last observations in a group
I Identifying obs with min or max values in a group
I Identifying first and last spells in duration data

TIPP If you use observation numbering always make sure to sort your data
before. In particular, use the parentheses in the bys var (var2): prefix.

Alexander Ahammer (JKU) Module B: Programming preliminaries 29 / 53

Observation numbering

. bys id_worker (sl_start): g n = _n

. bys id_worker (sl_start): g N = _N

. g n_OVR = _n

. g N_OVR = _N

. list id_worker sl_start n N *_OVR in 1/10, sepby(id_worker)

id_wor~r sl_start n N n_OVR N_OVR

1. 166 04jun2011 1 3 1 322375
2. 166 09nov2011 2 3 2 322375
3. 166 20oct2012 3 3 3 322375

4. 276 15jan2009 1 1 4 322375

5. 548 18feb2005 1 6 5 322375
6. 548 04jul2005 2 6 6 322375
7. 548 05dec2005 3 6 7 322375
8. 548 09aug2006 4 6 8 322375
9. 548 28aug2006 5 6 9 322375

10. 548 10apr2008 6 6 10 322375

.

. * number of sick leaves per worker and year

. bys id_worker year: g sl_N = _N

. su sl_N
Variable Obs Mean Std. Dev. Min Max

sl_N 322,375 2.629035 1.933495 1 45

Alexander Ahammer (JKU) Module B: Programming preliminaries 30 / 53

Observation numbering

. // you can use observation numbering also to refer to specific cells in the data

. di id_worker[950] /* id_worker of the 950th observation in the data */
29498
. di id_worker[_N] /* id_worker of the last observation in the data */
14149633
. bys id_worker: g sl_dur_pre = sl_dur[_n-1]
(52,739 missing values generated)
. bys id_worker: g sl_dur_first = sl_dur[1]
. bys id_worker: g sl_dur_last = sl_dur[_N]
. list id_worker sl_dur* if id_worker <= 548, sepby(id_worker)

id_wor~r sl_dur sl_dur~e sl_d~rst sl_d~ast

1. 166 5 . 5 4
2. 166 8 5 5 4
3. 166 4 8 5 4

4. 276 9 . 9 9

5. 548 12 . 12 7
6. 548 7 12 12 7
7. 548 1 7 12 7
8. 548 4 1 12 7
9. 548 3 4 12 7

10. 548 7 3 12 7

Alexander Ahammer (JKU) Module B: Programming preliminaries 31 / 53

Observation numbering
Exercise

Exercise: Employment spells

Use pdmv_sl.dta and generate a running indicator for employment spells in the
data. Make sure that the data are sorted by id_worker sl_start, and use
observation numbering and by-groups to indicate distinct spells for every single
id_firm firm episode for every worker. For example,

id_worker id_firm spell

1 A 1
1 A 1
1 B 2
1 B 2
1 C 3
2 D 1

Compute also the number of sick leaves in the data per employment spell.

Alexander Ahammer (JKU) Module B: Programming preliminaries 32 / 53

Observation numbering
Exercise

. use "data/pdmv_sl.dta", clear
(All sick leaves 2004-2012 for 10% sample of Austrian employees)
. sort id_worker sl_start
. by id_worker: g start = id_firm != id_firm[_n-1]
. by id_worker: g spell = sum(start)
. bys id_worker spell (sl_start): g sl_n = _N
. list id_firm sl_start start spell sl_n if id_worker == 1738, sepby(spell)

id_firm sl_start start spell sl_n

30. 1416048031600 18feb2005 1 1 3
31. 1416048031600 08mar2006 0 1 3
32. 1416048031600 27dec2006 0 1 3

33. 1410075312000 20feb2007 1 2 5
34. 1410075312000 27feb2007 0 2 5
35. 1410075312000 31dec2008 0 2 5
36. 1410075312000 21oct2010 0 2 5
37. 1410075312000 10aug2012 0 2 5

Alexander Ahammer (JKU) Module B: Programming preliminaries 33 / 53

B.4

Macros

Alexander Ahammer (JKU) Module B: Programming preliminaries 34 / 53

Macros

Perhaps one of the most important concepts for programming are macros. A
macro is a variable container that can hold either one object (e.g., a number,
varname, or a string) or a set of objects.

The Stata macro is an alias that contains a name and a value.
I When its name is addressed, it returns the specified value.
I That operation can be carried out at any time.
I The macro’s value can be modified with an additional command.

Depending on its scope, the macro can be local or global. A local macro is
ceases to exist when a do-file terminates, a global macro exists for the
duration of the Stata program or an interactive session.

A local macro can be defined using local macroname value , a global
macro using global macroname value . The local macro is addressed
with ‘macroname ’, the global with $macroname .

I If value is numeric, use an = in front
I If value is a string, enclose it in " "

Alexander Ahammer (JKU) Module B: Programming preliminaries 35 / 53

Macros
How macros are defined and addressed

. loc hello "world"

. di "`hello´"
world
. loc x = 2
. di `x´
2
.
. global y = 3
. di $y
3

Alexander Ahammer (JKU) Module B: Programming preliminaries 36 / 53

Macros
How macros are defined and addressed

Macros are addressed by the macroname inside left single-quote character (‘)
and the right single-quote character (’). Di�erent quotes are used to signify
beginning and end of a macro when macros are nested.

I ‘pid‘year’’ first addresses ‘year’, then ‘pidyear’.

Correct punctuation is crucial when addressing macros. Apart from the
apostrophes ‘ ’ that enclose the macro name, sometimes it’s required to
enclose the entire expression in " ", for example if the macro contains a
string and has to be logically evaluated against another string.

I This could be the first line of an if-loop (see later): if "‘var’" == "p_age"

Using an = when defining the macro tells Stata to evaluate the remainder of
the expression rather than merely aliased to the macro’s name.

I loc x = 1/2 will return 0.5 instead of 1/2 (−→ evaluated!)
I Do not use = with strings or varnames, this can cause major problems.

Alexander Ahammer (JKU) Module B: Programming preliminaries 37 / 53

Macros
Two examples

Without equality sign

. loc count 0

. loc anxlevel none mild moderate severe

. foreach a of local anxlevel {
2. loc count `count´ + 1
3. di "Anxiety level `count´: `a´"
4. }

Anxiety level 0 + 1: none
Anxiety level 0 + 1 + 1: mild
Anxiety level 0 + 1 + 1 + 1: moderate
Anxiety level 0 + 1 + 1 + 1 + 1: severe

With equality sign

. loc count = 0

. loc anxlevel none mild moderate severe

. foreach a of local anxlevel {
2. loc count = `count´ + 1
3. di "Anxiety level `count´: `a´"
4. }

Anxiety level 1: none
Anxiety level 2: mild
Anxiety level 3: moderate
Anxiety level 4: severe

Note how we the first line inside the foreach loop−→ it contains the local’s
name twice: once without punctation (which defines its name) and again after
the = sign, which addresses its current value.

You can use also loc ++count instead of using loc count = ‘count’
+ 1 to increment the counter by 1.

Alexander Ahammer (JKU) Module B: Programming preliminaries 38 / 53

Macros
Macro evaluation

Macro evaluation generates macros on the fly. For example, you may need the
outcome (or evaluated value) of a function, but since you only need it once it
doesn’t make sense to define a local macro.

‘= exp ’ tells Stata to evaluate exp immediately.

Suppose you have a time series graph and you want to draw a line on the
x-axis at a particular date.

I xline(‘= mdy(1,1,2008)’)
I Stata will return xline(17532)
I Easier than defining loc xlineval = mdy(1,1,2008)

Alexander Ahammer (JKU) Module B: Programming preliminaries 39 / 53

Macro functions

Stata contains a lot of useful functions that allow you to retrieve and
manipulate the contents of macros. A full list can be found in the manual,
here I give an overview on important functions I use most often.

I help extended_fcn [Manual link: Macros]

Command Example Returns

value label varname loc lab: value label sl_dur String with value label of sl_dur
variable label varname loc lab: var label sl_dur String with variable label of sl_dur
dir dir files path loc folder: dir . files "*" String with all files stored in CWD

display loc x: display %9.4f sqrt(2) Results from display command

word count string loc wds: word count ‘v’ Number of words in macro v
word # of string loc wd: word 1 of ‘v’ First word in macro v
length local macro loc ln: length local ‘v’ Length of macro v

Also sometimes useful: levelsof var, local(mname) stores all
realizations of the variable var in the new local mname .

Alexander Ahammer (JKU) Module B: Programming preliminaries 40 / 53

https://www.stata.com/manuals13/pmacro.pdf

Macro functions
Exercise I

Exercise: Using macro functions, part 1

Use the data is pdmv_sl.dta. Change the [sick leave] prefix in the variable
labels of all sl_ variables to [sl].

Alexander Ahammer (JKU) Module B: Programming preliminaries 41 / 53

Macro functions
Exercise I

. des sl_*
storage display value

variable name type format label variable label

sl_start int %td [sick leave] start date
sl_end int %td [sick leave] end date
sl_dur byte %9.0g [sick leave] duration
. foreach v of varlist sl_* {

2. loc oldlab : var label `v´
3. di "`oldlab´"
4. loc labstr = substr("`oldlab´",strpos("`oldlab´","]")+2,.)
5. di "`labstr´"
6. loc newlab = "[sl] " + "`labstr´"
7. la var `v´ "`newlab´"
8. }

[sick leave] start date
start date
[sick leave] end date
end date
[sick leave] duration
duration
. des sl_*

storage display value
variable name type format label variable label

sl_start int %td [sl] start date
sl_end int %td [sl] end date
sl_dur byte %9.0g [sl] duration

Alexander Ahammer (JKU) Module B: Programming preliminaries 42 / 53

Macro functions
Exercise I

Remarks to Exercise I:

Note that we use a loop here, but the code works also if you write all lines
inside the curly braces { } for every sl_ var separately.

First, we store the old variable label in the local oldlab.

Next, we use the substr command to cut the [sick leave] prefix out of
the variable labels. Here we use a little trick: Instead of specifying that the
label part always starts at the 13th position in the string, we tell Stata to look
for the position of] in the string, and then specify that the actual label starts
2 digits after]. This code is generalizable if you have di�erent prefixes.

The rest of the code is straight forward. Define another local newlab which
adds the new prefix to the label snippet extracted before, and then attach the
new label to the var.

Alexander Ahammer (JKU) Module B: Programming preliminaries 43 / 53

Macro functions
Exercise II

Exercise: Using macro functions, part 2

Write a code that automatically opens all datasets in your data folder and saves
them to use with older Stata versions using the saveold command.a

aStata is backward compatible but not fully forward compatible, so you should always use
saveold if you know that coworkers use older Stata versions.

Alexander Ahammer (JKU) Module B: Programming preliminaries 44 / 53

Macro functions
Exercise II

. local datasets : dir "data" files "*.dta"

. di `datasets´
pdmv_sl.dta
.
. foreach data of local datasets {

2. use data/`data´, clear
3. saveold data/`data´, replace v(11)
4. }

(All sick leaves 2004-2012 for 10% sample of Austrian employees)
(saving in Stata 12 format, which Stata 11 can read)
file data/pdmv_sl.dta saved

Alexander Ahammer (JKU) Module B: Programming preliminaries 45 / 53

B.5

Loops

Alexander Ahammer (JKU) Module B: Programming preliminaries 46 / 53

foreach and forvalues

Loops (=⇒ programs that repeat the same command for several variables
without having to write the same code for all variables) in Stata are typically
done with the foreach and forvalues commands.

A simple numeric loop for a defined and finite set of values over which to
iterate can be accomplished using forvalues:

forval i = 1/5 {
g p_educ‘i’ = p_educ == ‘i’

}

Here, we define a local macro i as the loop index. Following an = we give a
range of values (in form of a numlist) which i is going to take on.

You can write as many commands as you want inside the loop. Note also that
you can nest multiple loops if you want to iterate over more than one var.

Alexander Ahammer (JKU) Module B: Programming preliminaries 47 / 53

foreach and forvalues

With foreach you can loop over any set of items, regardless of pattern.

There are many possible applications for foreach loops (some of which we
have already learned in this module), but its single most important feature is
that it allows to loop over variables:

foreach v in p_age p_female p_educ {
sum ‘v’
corr sl_dur ‘v’

}

Here we define a local v as the variable (or loop index) to iterate over. The
loop will compute summary statistics and correlation coe�cients for the
three worker vars in the data.

Foreach allows di�erent list types, instead of in list you may write
I of local localmacroname
I of global globalmacroname
I of varlist varlist

Alexander Ahammer (JKU) Module B: Programming preliminaries 48 / 53

B.6

Scalars and matrices

Alexander Ahammer (JKU) Module B: Programming preliminaries 49 / 53

Scalars

Aside from macros, there are two more object containers in Stata that have
certain properties and serve di�erent purposes: scalars and matrices.

Scalars can hold numeric and string values as well, but — unlike macros — can
hold only one single value.

Most estimation and data analysis commands return crucial parameters as
scalars. They can be accessed via return list and are also summarized in
the respective help files.

A scalar can be addressed by simply naming it (macros have to be
dereferenced), similar to variables in Stata. Avoid using the same names!

Alexander Ahammer (JKU) Module B: Programming preliminaries 50 / 53

Scalars
Exercise

Exercise: Manually compute 95% CI

In Stata you often have to calculate confidence intervals yourself, because
commands such as collapse do not allow to compute them directly. Obtain the
mean and standard deviation of the variable sl_dur using the summarize
command, and use only ingredients from its return list to compute the 95%
confidence interval of the population mean. Use ci mean sl_dur to validate
your result.

Alexander Ahammer (JKU) Module B: Programming preliminaries 51 / 53

Scalars
Exercise

. su sl_dur
Variable Obs Mean Std. Dev. Min Max

sl_dur 322,375 6.020889 5.386769 1 44
. return list, all
scalars:

r(N) = 322375
r(sum_w) = 322375
r(mean) = 6.020888716556805
r(Var) = 29.01728221067055
r(sd) = 5.386769181120586

r(min) = 1
r(max) = 44
r(sum) = 1940984

. sca se = r(sd)/sqrt(r(N))

. sca sl_lb = r(mean) - invnormal(0.975)*se

. sca sl_ub = r(mean) + invnormal(0.975)*se

. di "95% CI lower bound: " sl_lb ", upper bound: " sl_ub
95% CI lower bound: 6.0022937, upper bound: 6.0394837
. ci means sl_dur

Variable Obs Mean Std. Err. [95% Conf. Interval]

sl_dur 322,375 6.020889 .0094874 6.002294 6.039484

Alexander Ahammer (JKU) Module B: Programming preliminaries 52 / 53

Matrices

Stata provides a broad range on matrix operations for real matrices (and even
a dedicated matrix language which we may encounter in the last lecture).

I help matrix [Manual link: Summary of matrix commands]

Estimation commands such as reg store coe�cient matrices in e(b) and
variance-covariance matrices in e(V). Additionally, test statistics are often
saved in matrices and can be addressed as such.

I matrix X = mname
I matrix list X

Matrix commands are often useful for housekeeping; e.g., creating
non-standard tables for export. We will discuss specific applications as we go
along.

Alexander Ahammer (JKU) Module B: Programming preliminaries 53 / 53

https://www.stata.com/manuals13/pmatrix.pdf

