
Programming, Data Management and Visualization
Module A: Elementary concepts and data organization

Alexander Ahammer

Department of Economics, Johannes Kepler University, Linz, Austria
Christian Doppler Laboratory Ageing, Health, and the Labor Market, Linz, Austria

γ version, final
Last updated: Monday 12th October, 2020 (13:27)

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 1 / 57

A.1

Introduction and opening remarks

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 2 / 57

Introduction

Programming is nothing more than writing codes−→ a succession of
commands that can be executed using software.

Before we cover how to program loops, merge data, make fancy tables, and
write an estimation command; we discuss some preliminaries:

I How to set up and organize a project
I How to make your work replicable for others
I Data types and memory
I How to import and export data

For now, the only thing you need is a net-aware version of Stata running on
your computer. I use version 16, but any v between 12 and 16 is fine.

Make sure you keep Stata updated. With ssc install command you can
download user-written commands from the SSC library.

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 3 / 57

Introduction
Do-files

Codes for Stata are called do-files. They are nothing else than text files,
although we use Stata’s built-in do-file editor to write and edit them.

In contrast to most external editors, the do-file editor allows you to execute
only a section of the do-file.

I advise coding with Stata on one half of your monitor and the do-file editor
on the other half. To execute, press

I CTRL + D in Windows
I + Shift + D on Mac

If you code a lot, get a second monitor.

ado-files are similar, they allow you to write programs for tasks you often
perform (we may have a small section on ado-file programming later on).

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 4 / 57

Exemplary data

In module A we work mainly with pdmv_sl.dta. This is a data extract from
the Austrian Social Security Database taken from a 2017 paper of mine.1

These data contain all sick leaves between 2004–2012 for a 10% sample of
Upper Austrian employees. Everything is anonymized.

The unit of observation is a single sick leave spell, thus it is a worker–sick
leave panel. Covariates are measured at the beginning of the sick leave.

The dataset is password protected, you have to sign a form first which
requires you, amongst other things, not to share the data with others and to
delete the dataset after the semester. [Link to DB folder]

Check the data at home and familiarize yourself with their structure and
particularities. Requires at least Stata version 12.

1“Physicians, sick leave certificates, and patients’ subsequent employment outcomes,” Health
Economics, https://onlinelibrary.wiley.com/doi/10.1002/hec.3646.

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 5 / 57

https://www.dropbox.com/sh/lgkwnm74bukscep/AACoXYpO3ZXHG23igTqzH3xya?dl=0
https://onlinelibrary.wiley.com/doi/10.1002/hec.3646

Exemplary data

. des
Contains data from data/pdmv_sl.dta

obs: 322,375 All sick leaves 2004-2012 for 10% sample of Austrian employees
vars: 18 19 Sep 2018 19:11
size: 27,079,500

storage display value
variable name type format label variable label

id_worker long %16.0f worker ID
id_GP str32 %32s * GP ID
id_firm double %13.0f firm ID
p_age float %9.0g [worker] age in years
p_female byte %8.0g [worker] =1 if female
p_educ byte %27.0g educ [worker] education
gp_sex str1 %9s [GP] sex
sl_start int %td [sick leave] start date
sl_end int %td [sick leave] end date
sl_dur byte %9.0g [sick leave] duration
e_start int %d [emp] start date
e_end int %d [emp] end date
e_class byte %19.0g classlab [emp] occupation
e_tenure int %9.0g [emp] job tenure
e_exper float %8.0f [emp] experience
e_wage double %10.0g [emp] annual wage
f_firmsize double %16.0f [firm] firm size
f_industry byte %8.0g industry [firm] NACE95 industry

* indicated variables have notes

Sorted by: id_worker sl_start

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 6 / 57

Glossary

I use di�erent abbreviations that are common in Stata lingo, here is an extract of
ones we use in this module:

Abbreviation Explanation Stata help file

var Variable
varname Variable name (new or already existing) [11.4 varlists]
varlist List of variable names [11.4 varlists]
numlist List of numbers [11.1.8 numlist]
Macro Variables of Stata programs [18.3 Macros]

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 7 / 57

https://www.stata.com/manuals14/u11.pdf
https://www.stata.com/manuals14/u11.pdf
https://www.stata.com/manuals13/u11.pdf
https://www.stata.com/manuals/u18.pdf

A.2

Project organization and replicability

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 8 / 57

My Five Coding Commandments

Thou shalt not use the command line or the user interface.

Thou shalt not overwrite datasets.

Thou shalt comment your do-files.

Honor thy Google and Stata’s built in help function.

Thou shalt write your do-files as e�ciently as possible.

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 9 / 57

Replicability

Replicability means that your analysis (e.g., a homework, a scientific study,
etc.) should produce the same results if repeated exactly.

What does that imply for programming? You should organize your projects in
a way that allows other researchers (or co-workers or other collaborators) to
retrace and replicate your data preparation and analysis.

Always keep do-files. They not only ensure replicability, but also help you in
many other ways (e.g., in troubleshooting).

More specifically, it means that anybody who has the same folder structure
and data as you should be able to understand and run your code without
error and obtain the exact same results as you.
=⇒ Ideally, the other person should only change the current directory to run your

code without error.

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 10 / 57

Excursus Current directory

Similar to other languages Stata uses the concept of current working directory
(CWD).

Set with cd "path "
I Always enclose file paths in " "
I Avoid capital letters, spaces, and symbols in your folder structure
I Also in Windows environments, use / as a directory separator

Can be located on your hard disk or external drives, such as your Dropbox or a
network drive.

If you open or save a file, Stata will automatically refer to your CWD, unless
you specify a file path in the command:

I save filename, replace vs.
I save "C:/project/filename ", replace

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 11 / 57

Replicability
Do-file basics

Always make sure to keep codes as tidy and perspicuous as possible.
I Use comments, not only for others, but also for your future self.
I Use tab stops to indicate di�erent hierarchies in your code.
I Make sections in your code, and distinguish them cleanly.
I Use di�erent comments as dividers (*, //, /* */)

Do files should be self-contained, meaning they should not rely on something
left in memory and not use a dataset unless it loads the dataset before.

If you simulate data or you draw randomly from the data, always set a random
number seed in your do-file with set seed number . This guarantees that
you always get the same results.

Be consistent, always name do-files according to their function, and, again,
NEVER save over another data file!

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 12 / 57

Replicability
Do-file basics

Type expressions so that they are readable:
I Put spaces around each binary operator except ˆ, e.g., g z = x + yˆ2
I Avoid spaces around * and /
I Use parentheses for readability
I Put a space after each comma in a function, e.g., inlist(a, b, c)

To deal with long lines, use ///. Use #delimit ; only for commands that
spread many lines (e.g., graphs, estouts)

Logical negations can be expressed using ! or ~, you can sometimes save a
lot of coding if you put them in front of variables or functions.

I g male = !female instead of g male = female == 0 (if female is binary)
I g out = !inrange(x, 0, 5)
I g educ_nonmi = !missing(educ)

Use macros or scalars instead of “magic numbers” — e.g., save the mean of a
variable as a scalar if you need it in your code, refer to _b[var] if you need
the coe�cient on var , etc.

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 13 / 57

Project setup
Do-file basics

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 14 / 57

Project setup

Keep multiple do-files for di�erent preparation and analysis steps, use a
master do-file to trigger the others.

Specify a current directory — this is the only line of the code other people
should have to change if they want to replicate your work.

I Easier if you work on Dropbox or a shared network folder

Generate a folder structure from within Stata using the mkdir command.
I cap mkdir foldername

I Placing capture in front makes sure that the do-file continues executing even if
foldername already exists

Make logs for every do-file and put today’s date in the title of the log file, this
allows you to track changes.

I Save the date in a global macro (see later) and open logs with log using
filename.smcl, replace at the beginning of every do-file

I Close with log close and convert to pdf with translate filename.smcl
filename.pdf (works only on Windows)

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 15 / 57

Project setup
Master do-file

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 16 / 57

Project setup
Example code

00_master.do

cd "D:/pdmv/project1"
cap mkdir data
cap mkdir logs

* obtain date for log files
loc date: display %td_CCYY_NN_DD date(c(current_date), "DMY")
global date_string = subinstr(trim("‘date’"), " " , "-", .)

* trigger do-files
do 01_ps1

IMPORTANT Be careful when copying the above code in your do-file, the date local may not be addressed
properly (you have do use the adequate apostrophes, see [18.3 Macros] or help local).

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 17 / 57

https://www.stata.com/manuals/u18.pdf

Project setup
Example code

01_ps1.do

cap log close
log using logs/ps1_log_${date_string}.smcl, replace

/* here comes your analysis */

log close
translate logs/ps1_log_${date_string}.smcl logs/ps1_log_${date_string}.pdf
erase logs/ps1_log_${date_string}.smcl

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 18 / 57

Project setup
Example code — remarks

With global name you generate a global macro (more on macros later).2 It
is addressed by $name or ${name }. With local name you define a local
macro which can only be accessed within the do-file.

Note that we placed cap log close in the beginning of 01_ps1.do. The
problem here is that, if your do-file has an error and stops executing, your log
is still open. If, after troubleshooting, you want to re-execute your do-file, you
would get an error saying that the log file is still open. Again, capture makes
sure to execute the command afterwards only if a do-file is open.

Note also that we erased the smcl log which we converted to pdf anyways. To
save capacity, erasing also makes sense for temporary datasets, e.g., ones you
have to save in order to merge them to others.

2Global macros are global, that is, there is only one global macro with a specific name in Stata, and
its contents can be accessed by a Stata command executed at any Stata level.

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 19 / 57

Other tips for an e�cient and secure workflow

If possible, use Dropbox or any other cloud service to store your codes and
data.

If you work on multiple computers, make a harddrive partition on each which
you use only for your work. Put the Dropbox folder on this partition.

If you don’t want to use Dropbox, synchronize your files with FTP or torrent,
e.g., with Resilio Sync.

Backup data as often as possible, ideally on external harddrives.

If you collaborate a lot, it may make sense to dive into git, which allows
versioning.

I https://github.com/fpinter/git-for-economists/blob/master/
git-for-economists-presentation.pdf

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 20 / 57

https://github.com/fpinter/git-for-economists/blob/master/git-for-economists-presentation.pdf
https://github.com/fpinter/git-for-economists/blob/master/git-for-economists-presentation.pdf

A.3

Data types

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 21 / 57

String variables

Load pdmv_sl.dta and des the data. In the column ‘storage type’ you will
see the data type of each variable.

Variables come in di�erent shapes or forms, the major distinction is between
numeric and string data variables.

String variables
I Can hold up to 244 characters in length, 1 byte per character.

I Typically ordinal information is stored as strings (e.g., names, job or industry
classifications, addresses, etc.)

I It may make sense to convert string to numeric variables, the commands
destring (converting numbers stored as strings to numeric variables), and
encode (creating a new variable which attaches numbers to every realization of
a string variable) may prove useful.

I For a finite and small number of realizations, also tab, gen(varname) is
possible to convert from string to numeric.

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 22 / 57

String variables

For the next exercises, you need the following two user-written packages:
I ssc install egenmore
I ssc install fre

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 23 / 57

String variables
Working with strings — destring

. // extract all real numbers from id_GP

. egen id_GP_real = sieve(id_GP), char(0123456789)
(965 missing values generated)
.
. // destring to numeric format
. des id_GP_real

storage display value
variable name type format label variable label

id_GP_real str12 %12s
. list id_GP_real in 1/5

id_GP_~l

1. 06374
2. 06374
3. 06374
4. 09
5. 7812

. destring id_GP_real, replace
id_GP_real: all characters numeric; replaced as double
(965 missing values generated)
. list id_GP_real in 1/5

id_GP_~l

1. 6374
2. 6374
3. 6374
4. 9
5. 7812

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 24 / 57

String variables
Working with strings — encode

. list gp_sex in 1/5

gp_sex

1. M
2. M
3. M
4. W
5. M

. encode gp_sex, gen(gp_sex_num)

. list gp_sex_num in 1/5

gp_sex~m

1. M
2. M
3. M
4. W
5. M

. fre gp_sex_num
gp_sex_num [GP] sex

Freq. Percent Valid Cum.

Valid 1 M 276263 85.70 87.69 87.69
2 W 38767 12.03 12.31 100.00
Total 315030 97.72 100.00

Missing . 7345 2.28
Total 322375 100.00

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 25 / 57

String variables
Working with strings — strpos(), substr()

. decode e_class, gen(class_str)

. ta class_str
[emp] occupation Freq. Percent Cum.

blue collar worker 195,760 60.72 60.72
white collar worker 126,615 39.28 100.00

Total 322,375 100.00
. count if strpos(class_str,"blue")

195,760
. g class = substr(class_str, 1, strpos(class_str,"collar")-2)
. ta class

class Freq. Percent Cum.

blue 195,760 60.72 60.72
white 126,615 39.28 100.00

Total 322,375 100.00

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 26 / 57

String variables
Working with strings

Sometimes you have to extract information from string variables, which can
be rather tricky. These functions may prove helpful:

I split s, p(" ") (splits string s by whatever is inside the " ")
I strpos(s1,s2) (the position in s1 at which s2 is last found; otherwise 0)
I substr(), subinstr(), and others (change certain portions of strings)

The built-in Stata help contains very detailed information on all aspects of
working with strings, consult especially:

I help strings [Link to v14 pdf manual]
I help string functions [Link to v14 pdf manual]

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 27 / 57

https://www.stata.com/manuals14/u12.pdf
https://www.stata.com/manuals/fnstringfunctions.pdf

String variables
Working with strings

. list

fullname

1. John Adams
2. Adam Smiths
3. Mary Smiths
4. Charlie Wade

. // generate separate vars for first and last name

. split fullname, p(" ")
variables created as string:
fullname1 fullname2
. rename (fullname1 fullname2) (firstname lastname)
. list

fullname firstn~e lastname

1. John Adams John Adams
2. Adam Smiths Adam Smiths
3. Mary Smiths Mary Smiths
4. Charlie Wade Charlie Wade

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 28 / 57

Numeric variables

Numeric variables can be stored as byte, int, long, float, and double.
The first three can only store integer values.

The di�erences in storage requirements between these variable types is
minimal, let Stata decide how to generate a variable and use compress
before saving a data file.

IMPORTANT: Sometimes identifier variables are extremely long, and Stata may
choose a format that truncates the variable. Make sure to list such
variables, and tell Stata that you need new variables in double format if you
want to copy or recode them.

I gen double newvarname = oldvarname

Experts in fine digit programming suggest storing variables with many digits
as strings instead of numeric variables.

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 29 / 57

Numeric variables
Variable lengths and storage requirements

Storage type Minimum Maximum Bytes

byte –127 100 1
int –32,767 32,740 2
long –2,147,483,647 2,147,483,647 4
float –1.701 × 1038 1.701 × 1038 4
double –8.988 × 10307 8.988 × 10307 8

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 30 / 57

Numeric variables
The variable length fallacy

. gsort -id_firm /* sorts id_firm in descending order */

. list id_firm in 1/5

id_firm

1. 1919003067000
2. 1918508076000
3. 1917300028000
4. 1917300028000
5. 1917300028000

. g tmp1 = id_firm /* STATA saves in float format, which is too short */

. g double tmp2 = id_firm

. format tmp1 tmp2 %13.0f

. list tmp1 tmp2 in 1/5

tmp1 tmp2

1. 1919003131904 1919003067000
2. 1918508072960 1918508076000
3. 1917299982336 1917300028000
4. 1917299982336 1917300028000
5. 1917299982336 1917300028000

. compress
variable gp_sex_num was long now byte
(967,125 bytes saved)

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 31 / 57

Date and time handling

It’s very common to work with dates and times, for example if you work with
spells (e.g., employment spells) or survival data (how long until a certain
event occurs). In pmdv_sl.dta you have several date variables.

Dates are represented by numbers known as %t values measuring the time
interval from a reference date or epoch. The epoch for Stata is midnight on
January 1, 1960. Days following that date have positive integer values, days
prior negative ones.

Days represented in days are known as %td values, you also have other
frequencies: weeks (%tw), months (%tm), quarters (%tq), or half-years (%th).
Intradaily times are supported since Stata 10, a date-time variable is known
as %tc and can be as granular as seconds or miliseconds.

Helpful Stata documents (that even I refer to all the time):
I help datetime [Link to v14 pdf manual]
I help datetime_translation [Link to v14 pdf manual]

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 32 / 57

https://www.stata.com/manuals14/u24.pdf
https://www.stata.com/manuals14/ddatetimetranslation.pdf

Date and time handling
Examples for dates, relative to Stata epoch

Format Date Value how to address

Daily dates

%td
January 1, 1960 0 mdy(1,1,1960)
January 30, 1960 29 mdy(1,30,1960)
October 15, 2018 21,472 mdy(10,15,2018)

Monthly dates

%tm
January, 1960 0 ym(1960,1)
March, 1960 2 ym(1960,3)
October, 2018 705 ym(2018,10)

Quarterly dates

%tq
Q1, 1960 0 yq(1960,1)
Q3, 1960 2 yq(1960,3)
Q4, 2018 235 yq(2018,4)

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 33 / 57

Date and time handling

Some useful tips:

Always store date variables in long format and times in double format to
avoid overflow conditions.

Sometimes, you only have limited information on dates (e.g., birth year and
birth month) — pick the appropriate format (%tm)! Make sure not to mix up
di�erent formats (e.g., when calculating durations).

Date conversions can be tricky, but the Stata help provides a solution (in the
form of specific functions that have to be used) for every possible conversion
you can imagine. Some examples you will find on the next two slides.

Use the inrange() function if you want to check whether a variable (could
be a date) lies within two boundaries.

Dates are numbers, with format varname you can specify the format in
which it is displayed.

I format sl_start sl_end %td

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 34 / 57

Date and time handling
Basics of date time conversion

Converting dates between di�erent formats can be tricky, but — again — you
will find the appropriate function in the Stata help file or manual.

If your date is saved as a string, use the functions in help datetime
translation to translate to a date.

If you have a date saved in several variables (e.g., birthday , birthmonth ,
birthyear), use the function on slide 33 to generate a date.

You want to convert from a daily date−→ SIF-SIF conversion in the [manual]
I To a monthly var: tm = mofd(td)
I To a quarterly var: tq = qofd(td)
I To a yearly var: ty = yofd(td)

Sometimes you may also want to convert between missing entries, e.g.,
I From monthly to quarterly var: tq = qofd(dofm(tm))
I From weekly to monthly var: tw = mofd(dofw(tw))

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 35 / 57

https://www.stata.com/manuals14/u24.pdf

Date and time handling
Basics of date time conversion

You can extract also portions of dates:

Portion to be extracted Function Example

Calender year year(td) 2013
Calender month month(td) 7
Calender day day(td) 5

Day of week dow(td) 2 (Tuesday)
Week within year week(td) 27
Quarter within year quarter(td) 3

I Note that these functions return particular values in the domain of the portion
that is extracted (e.g., month 12 instead of a monthly var as on slide 33).

I You always need a %td date for these extractions. If you want to extract from a
less granular date, you have to convert first (slide 35): quarter(dofq(tq)).

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 36 / 57

Date and time handling
Date saved as string

. list /* manually imputed dates as strings */

date_str~g

1. 20jan2007
2. 16June06
3. 06sept1985
4. 21june04

. g date = date(date_string, "DM20Y")

. list

date_str~g date

1. 20jan2007 17186
2. 16June06 16968
3. 06sept1985 9380
4. 21june04 16243

. format date %td

. list

date_str~g date

1. 20jan2007 20jan2007
2. 16June06 16jun2006
3. 06sept1985 06sep1985
4. 21june04 21jun2004

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 37 / 57

Date and time handling
Date saved in multiple vars

. list /* again, manually imputed dates */

bday bmonth byear

1. 20 1 1960
2. 1 5 1980
3. 5 12 1975
4. 8 10 1930
5. 30 4 1989

. g bdate = mdy(bmonth,bday,byear)

. list

bday bmonth byear bdate

1. 20 1 1960 19
2. 1 5 1980 7426
3. 5 12 1975 5817
4. 8 10 1930 -10677
5. 30 4 1989 10712

. format bdate %td

. list

bday bmonth byear bdate

1. 20 1 1960 20jan1960
2. 1 5 1980 01may1980
3. 5 12 1975 05dec1975
4. 8 10 1930 08oct1930
5. 30 4 1989 30apr1989

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 38 / 57

Date and time handling
Calculate duration with di�erent date formats

. list /* manually impute also random death dates */

bday bmonth byear bdate dmonth dyear

1. 20 1 1960 20jan1960 2 2018
2. 1 5 1980 01may1980 12 2018
3. 5 12 1975 05dec1975 5 2016
4. 8 10 1930 08oct1930 1 2017
5. 30 4 1989 30apr1989 12 2018

. g ddate = ym(dyear,dmonth)

. list

bday bmonth byear bdate dmonth dyear ddate

1. 20 1 1960 20jan1960 2 2018 697
2. 1 5 1980 01may1980 12 2018 707
3. 5 12 1975 05dec1975 5 2016 676
4. 8 10 1930 08oct1930 1 2017 684
5. 30 4 1989 30apr1989 12 2018 707

. format ddate %tm

. g age = ddate - ym(byear,bmonth)

. g age_alt = ddate - mofd(bdate)

. su age*
Variable Obs Mean Std. Dev. Min Max

age 5 607.2 269.214 356 1035
age_alt 5 607.2 269.214 356 1035

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 39 / 57

Date and time handling
Exercise I

Exercise: Day of the week

Use the data is pdmv_sl.dta for this exercise. Find out which day of the week
(Monday–Sunday) sick leaves end most often. Make a histogram with sick leave
ending day densities per day of the week.

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 40 / 57

Date and time handling
Exercise I

. use "data/pdmv_sl.dta", clear
(All sick leaves 2004-2012 for 10% sample of Austrian employees)
. g dow_end = dow(sl_end)
. la def dow 0 "Sun" 1 "Mon" 2 "Tue" 3 "Wed" 4 "Thu" 5 "Fri" 6 "Sat", replace
. la val dow_end dow
. fre dow_end, order
dow_end

Freq. Percent Valid Cum.

Valid 0 Sun 71050 22.04 22.04 22.04
1 Mon 28358 8.80 8.80 30.84
2 Tue 35226 10.93 10.93 41.76
3 Wed 46971 14.57 14.57 56.33
4 Thu 33430 10.37 10.37 66.70
5 Fri 92896 28.82 28.82 95.52
6 Sat 14444 4.48 4.48 100.00
Total 322375 100.00 100.00

. hist dow_end, d xlab(0(1)6, val) xtitle("") fcolor("255 69 0") scheme(s2mono) graphregion(color(white))
(start=0, width=1)
. gr export "slides/graphs/dow.pdf", as(pdf) replace
(file slides/graphs/dow.pdf written in PDF format)

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 41 / 57

Date and time handling
Exercise I

0
.1

.2
.3

D
en

si
ty

Sun Mon Tue Wed Thu Fri Sat

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 42 / 57

Date and time handling
Exercise II

Advanced Exercise: Event study

Continue to use the data in pdmv_sl.dta. Replicate the event study below, which
shows the average unconditional probability that employment ends (e_end) for up
to 5 months after the sick leave ends (sl_end).

.0
5

.1
.1

5
.2

.2
5

P
ro

b.
 o

f b
ei

ng
 fi

re
d

0 1 2 3 4 5
Month after sick leave

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 43 / 57

Date and time handling
Exercise II

use "data/pdmv_sl.dta", clear

egen id_sl = group(id_worker sl_start)
g sl_end_month = mofd(sl_end)
format sl_end_month %tm

// expand to five obs per sick leave
expand 6, gen(_ex)
sort id_sl _ex
bys id_sl: g t = _n - 1
g sl_month = sl_end_month + t
format sl_month %tm

// check whether e_end falls within t=0 and t=5
g fired = mofd(e_end) <= sl_month
list sl_start sl_end e_end t sl_month fired if id_sl == 3, sep(0)

// make event study
collapse (mean) fired, by(t)

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 44 / 57

Date and time handling
Exercise II (remarks)

This code contains some functions and tricks we will learn this semester, for
example the by prefix and observation counting using _n (which will be a
huge topic in module B), but it illustrates how you work with date conversion.

sl_end is a %td variable, so we use mofd() (“month of daily date”) to
convert it into a %tm var.

format varname %tm is used here only for us to check whether the
conversion went right, it’s not necessary for Stata to handle the var as %tm.

This is the graph command I used in case you are interested:

tw line fired t, ytitle("Prob. of being fired") xtitle("Month after sick
leave") lcolor("255 69 0") lwidth(*2) xsize(7.5) scale(1.3) scheme(s2mono)
graphregion(color(white))

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 45 / 57

Date and time handling
Exercise II (remarks)

. list sl_start sl_end e_end t sl_month fired if id_sl == 3, sep(0)

sl_start sl_end e_end t sl_month fired

13. 20oct2012 23oct2012 31dec2012 0 2012m10 0
14. 20oct2012 23oct2012 31dec2012 1 2012m11 0
15. 20oct2012 23oct2012 31dec2012 2 2012m12 1
16. 20oct2012 23oct2012 31dec2012 3 2013m1 1
17. 20oct2012 23oct2012 31dec2012 4 2013m2 1
18. 20oct2012 23oct2012 31dec2012 5 2013m3 1

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 46 / 57

Date and time handling
Exercise II (additional exercise)

Advanced Exercise: Event study with adjusted probabilities

Consider again the event study from Exercise II. Suppose you want to adjust the
firing probabilities for age, gender, tenure, and occupation. Produce a graph that
contains the adjusted probabilities and include also the unconditional firing
probabilities from before.

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 47 / 57

Date and time handling
Exercise II (additional exercise)

-.1
-.0

5
0

.0
5

.1
A

dj
us

te
d

pr
ob

. o
f b

ei
ng

 fi
re

d

.0
5

.1
.1

5
.2

.2
5

U
nc

on
di

tio
na

l p
ro

b.
 o

f b
ei

ng
 fi

re
d

0 1 2 3 4 5
Month after sick leave

Unconditional Adjusted

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 48 / 57

Date and time handling
Exercise II (additional exercise)

* adjust for several vars
egen p_age_cat = cut(p_age), at(15(5)70)
reg fired i.p_age_cat p_female e_tenure i.e_class
predict fired_adj, r
su fired*

collapse (mean) fired*, by(t)
#delimit ;
tw (line fired t, lcolor("255 69 0") lpattern(dash))

(line fired_adj t, lcolor("255 69 0") lpattern(solid) lwidth(*2)
yaxis(2)),

ytitle("Unconditional prob. of being fired", axis(1))
ytitle("Adjusted prob. of being fired", axis(2))
xtitle("Month after sick leave")
xsize(7.5) scale(1.3) scheme(s2mono) graphregion(color(white))
legend(order(1 "Unconditional" 2 "Adjusted"))

;
#delimit cr

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 49 / 57

Time series operators

Stata provides time series operators L. (lags), F. (leads or forward values),
D. (di�erences), and S. (seasonal di�erences).

It’s not necessary to create new variables for these constructs if the data are
tsset or xtset (Stata knows that you handle time series or panel data).

I Operators can be used almost everywhere a varlist is required, e.g., in
regressions or summary statistics, simply put in front of varname.

Combined with a numlist, you can even include multiple of these constructs,
e.g., L(1/4).varname includes 4 lags of varname .

Operators are easy to use and less erratic than manually generating
lags/leads/etc. For example, gen lag1 = x[_n-1] can be erratic when
time series/panel is not balanced.

[11.4.4 Time series varlists]

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 50 / 57

https://www.stata.com/manuals/u11.pdf

A.4

Memory and data import/export

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 51 / 57

Memory

Newer Stata versions do a pretty good job of automatically allocating the
appropriate amount of memory your dataset requires.

Stata MP can do multi-core processing with up to 20 bn observations and
10,998 variables, your local PC is most likely restricted far below this limit.

With memory you can check how much memory Stata has allocated, certain
processes can slow Stata down, e.g., creating large matrices.

Big data are typically handled on large capacity mainframes/clusters, such as
the new MACH2 at the JKU (allows jobs up to 512 GB RAM, 260 TB mass storage).

You don’t have to load full datasets, use the use if option to select only
certain vars/obs you need (can save some time).

Single best tip I can give you to handle massive datasets:
=⇒ Draw a random sample of the data and write your codes on that. As soon as your

code runs without error, execute it on the full data. Lean back.

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 52 / 57

preserve and restore

Several Stata commands replace the data in memory with a new dataset. For
example, collapse, which makes a dataset of summary statistics.

In your code you may want to invoke one of these commands, but you may
also want to retain the existing contents in memory for further use.

You need the preserve and restore commands:
I preserve sets aside the current contents in memory
I restore brings them back when needed

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 53 / 57

preserve and restore

use "data/pdmv_sl.dta", clear
preserve

collapse (mean) p_age, by(id_GP)
rename p_age gp_meanage
la var gp_meanage "[GP] avg age of patient pop"
save data/meanage_GP.dta, replace

restore
merge m:1 id_GP using data/meanage_GP.dta
erase data/meanage_GP.dta

This code

loads the sick leave data and saves it in memory using preserve,

calculates the average age of a GP’s patient stock (for every GP in the data),

and then merges the newly generated variable gp_meanage back to the
original dataset, which is brought back from memory with restore.

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 54 / 57

Getting your data into Stata

Source data do not necessarily have to be in Stata format, they can be
downloaded from a website, acquired in spreadsheet format, or made
available in a format of a di�erent statistical package.

When importing non-native Stata datasets, I usually break the first of my five
commandments (“Thou shalt not use the user interface”), because it allows
you to see a preview of what the data will look like after importing.

I Go to File → Import and select the file type from the dropdown menu
I Copy the command in your do-file

Exporting data is similar. In module C we will discuss the parmest and
putexcel commands, both are very powerful and allow you to export not
only data, but also estimation results or stored matrices (which is useful if
you want to plot, for example, a set of regression coe�cients).

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 55 / 57

Getting your data into Stata

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 56 / 57

Getting your data into Stata
General tips and remarks on importing data

IMPORTANT Get your data as early as possible into Stata, and perform all
manipulations via well-documented codes.

Typically microeconomic data comes in text (or ASCII) files (such as .raw
or .csv), these can be in free vs. fixed format (columns separated by tabstops
or certain delimiters). Make sure to choose the right delimiter.

If the data contain both numbers and strings, Stata may not automatically
import the numeric variable as such. This requires you to use the destring
command from before.

For some datasets that do not come in Stata format (e.g., the US NHANES)
there may be a directory (.dct) file available, which contains value labels for
certain variables (this can be extremely helpful).

IMPORTANT Beware that there are many ways of coding missing values (., 9,
99, m). Make sure to read the data documentation and find out how missings
are coded in the data you are importing.

Alexander Ahammer (JKU) Module A: Elementary concepts and data organization 57 / 57

