
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Analysing Plant Closure Effects Using Time-Varying 

Mixture-of-Experts Markov Chain Clustering 

 
by 
 

Sylvia FRÜHWIRTH-SCHNATTER 

Stefan PITTNER 

Andrea WEBER 

Rudolf WINTER-EBMER 

Working Paper No. 1610 

September 2016 

DDEEPPAARRTTMMEENNTT  OOFF  EECCOONNOOMMIICCSS
JJOOHHAANNNNEESS  KKEEPPLLEERR  UUNNIIVVEERRSSIITTYY  OOFF

LLIINNZZ

Johannes Kepler University of Linz
Department of Economics 

Altenberger Strasse 69 
A-4040 Linz - Auhof, Austria 

www.econ.jku.at 

rudolf.winterebmer@jku.at 



Analysing Plant Closure Effects Using Time-Varying

Mixture-of-Experts Markov Chain Clustering
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Abstract

In this paper, we study data on discrete labor market transitions from Austria. In

particular, we follow the careers of workers who experience a job displacement due to plant

closure and observe – over a period of forty quarters – whether these workers manage to

return to a steady career path. To analyse these discrete-valued panel data, we develop and

apply a new method of Bayesian Markov chain clustering analysis based on inhomogeneous

first order Markov transition processes with time-varying transition matrices. In addition, a

mixture-of-experts approach allows us to model the prior probability to belong to a certain

cluster in dependence of a set of covariates via a multinomial logit model. Our cluster

analysis identifies five career patterns after plant closure and reveals that some workers cope

quite easily with a job loss whereas others suffer large losses over extended periods of time.

Keywords: Transition data, Markov Chain Monte Carlo, Multinomial Logit, Panel data,

Inhomogeneous Markov chains

1 Introduction

Long-term career outcomes after job loss due to a plant closure – where all workers are auto-

matically displaced – are an often researched topic in labor economics, see e.g. Jacobson et al.

(1993), Fallick (1996), Ruhm (1991) or more recently, for Austria, Ichino et al. (2016). Such a

situation ideally allow us to observe how an economy absorbs exogenous shocks and how indi-

viduals react to perturbations to their stable career path. A plant closure has the advantage

that displaced workers are neither predominantly ones who are dismissed nor those changing

jobs voluntarily: a plant closure is close to an exogenous event where everybody gets displaced.

In the present paper, we consider data on discrete labor market transitions from Austria.

In particular, we follow the careers of workers who experience a job displacement due to plant

closure and observe – over a period of forty quarters – whether these workers manage to return

to a steady career path. We can classify labor market states by quarter as being employed, sick,

out of labor force, or retired.
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Modelling transitions between discrete states over time is of interest not only in labor eco-

nomics, but in many other areas of applied research such as demography, finance, mathematical

biology or genetics. Examples of topics to which these models are applied span a wide range:

transitions between demographic states over the life cycles of individuals or households, tran-

sitions between organisational characteristics, stock market participation or trading status of

firms, changes in climate conditions across regions over time, or transitions of genetic determi-

nants over generations of different species. These transition processes are typically captured by

observations of unit-specific time series of discrete states over a longitudinal component.

When analyzing the effect of plant closure on career patterns in our specific application, we

expect that unobserved heterogeneity in the response to job displacement from plant closure

is present in the data. To account for unobserved heterogeneity and to identify subgroups of

workers that follow similar transition patterns in our data set, which is a collection of several

thousands of discrete-valued time series, we apply model-based clustering, see Banfield and

Raftery (1993); Fraley and Raftery (2002); McNicholas and Murphy (2010); Gollini and Murphy

(2014) among many others. For model-based clustering of discrete-valued time series, typically

first order Markov chain models are used to model transitions between states and separate

clusters are distinguished by different transition matrices, see Frühwirth-Schnatter (2011) for a

recent review.

Two important questions arise in this context. First, time-invariant or predetermined char-

acteristics of a displaced worker may be correlated with group membership, i.e. persons with

specific characteristics are more likely to belong to a certain cluster than to the other clus-

ters. This issue can easily be addressed through the mixture-of-experts approach introduced by

Peng et al. (1996), which allows to model the prior probability to belong to a specific cluster

in dependence of covariates, see e.g. Gormley and Murphy (2008) for an application to model-

based clustering of rank data, Frühwirth-Schnatter and Kaufmann (2008) and Juárez and Steel

(2010) for an application to model-based clustering of time series of continuous outcomes and

Frühwirth-Schnatter et al. (2012) for an application to model-based clustering of discrete-valued

time series. To obtain a better understanding which workers in our data set are inclined toward

which career pattern, such a mixture-of-experts approach based on a multinomial logit model

is applied to model the prior probability to belong to a certain cluster in dependence of control

variables, such as the worker’s age at job displacement, the years of labor market experience,

the occupational type (i.e. blue versus white collar), and the income in the quarter preceding

the job displacement.

Second, previous approaches of Markov chain clustering of discrete-valued time series are

typically based on time-homogeneous first order Markov chains, see e.g. Cadez et al. (2003);

Ramoni et al. (2002); Frydman (2005); Pamminger and Frühwirth-Schnatter (2010). However,

for our data the transition process is not necessarily stationary over time which poses an obvious

challenge to time-invariant transition processes. An obvious reason for non-stationarity are the

shocks to the stationary transition processes caused by an event out of the workers’ control, such

as job displacement. In this case, the patterns of transition during the recovery phase may differ

significantly from stationary transitions and we expect that after a plant closure the intrinsically

stable transition process of workers in and out of jobs might be disturbed for a period of time.

Moreover, individual transitions will be shaped by changes over the life cycle – e.g. when it

comes to transitions towards sick leave or retirement as workers age over time.
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To meet these challenges, we develop and apply a new method of Markov chain clustering

and extend previous work on modelling transitions between labor market states through time-

homogeneous Markov chain clustering. We extend the approach of Frühwirth-Schnatter et al.

(2012) who introduced mixture-of-experts homogeneous Markov chain clustering for this type

of time series by introducing inhomogeneous first order Markov transition processes with time-

varying transition matrices as clustering kernels.

For our plant closure data, this new method of model-based cluster analysis identifies five

career patterns after plant closure and reveals that some workers cope quite easily with a job loss

whereas others suffer large losses over extended periods of time. By addressing this unobserved

heterogeneity explicitly, our paper contributes to the labor economics literature by revealing a

variety of different shock-absorption patterns across multiple clusters, while previous research

concentrated only on average effects of job displacements

The paper proceeds as follows. The next section introduces the empirical problem and the

data from Austrian social security registers. Section 3 introduces the time-varying Markov

chain clustering model and discusses Bayesian statistical inference. Estimation results and im-

plications for labor market careers after job displacement are discussed in Section 4. We first

comment on model selection and posterior assignment of individual cluster memberships. Then

we interpret the different clusters of labor market transition processes and discuss the relation-

ship between cluster membership and observable individual characteristics. Finally, we compare

labor market trajectories of displaced workers with those of a control group of individuals who

do not experience a plant closure.

2 Data Description

Our empirical analysis is based on administrative register data from the Austrian Social Secu-

rity Database (ASSD), which combines detailed longitudinal information on employment and

earnings of all private sector workers in Austria (Zweimüller et al., 2009). The data set includes

the universe of private sector workers in Austria covered by the social security system. All

employment spells record the identifier of the firm at which the worker is employed.

From the universe of employment records and employer identifiers, we can infer the char-

acteristics of a firm’s workforce at any point in time. Importantly for our application, we can

observe firm entries and exits. Specifically, we define a firm’s exit as the point in time when the

last employee leaves a firm. This is a fully data-driven definition, which in some cases identifies

employer exits that do not correspond to a plant closure, for example due to a firm takeover

or due to an administrative reassignment of the employer identifier. In these cases, we observe

that a large group of employees continue their employment with a new identifier. To get a more

precise definition of plant closure, we therefore drop an observation from the set of firm exits, if

more than 50% of the employees continue under a single new employer identification number. As

this method relying on worker flows does not work well for firms with high seasonal employment

fluctuations, we exclude the construction and tourism sectors from our analysis.

For the definition of our sample of displaced workers, we concentrate on all male workers

employed during the years 1982 to 1988, who were experiencing a job displacement due to plant

closure in this period. We follow these workers’ detailed labor market careers for 4 years prior
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to job displacement and for 10 years afterwards. We further restrict the sample to workers

displaced from firms that have more than 5 employees at least once during the period 1982 to

1988 and who have at least one year of tenure prior to displacement. Moreover, we select workers

who were between 35 and 55 years of age at the time of job displacement, leading to the analysis

windows being located before the official retirement age of 65 years in Austria. This procedure

identifies 5,841 workers displaced by plant closures between 1982 and 1988.

To compare labor market careers after job loss with a counterfactual situation without job

displacement, we extract a control group of workers who were employed during the years 1982 to

1988 in firms which do not close down. Our aim is to select controls who are very similar to the

displaced group in terms of their pre-displacement labor market careers and observable individual

characteristics. We therefore apply the following selection procedure. We start with the entire

population of 1,087,705 male workers employed during the years 1982 to 1988 from which we

draw a weighted sample of 5,841 workers, who are similar to the displaced group in terms of pre-

displacement characteristics. Weights are constructed based on a logit regression estimating the

probability of being displaced in the full set of displaced workers and potential controls (Imbens,

2004). The ASSD offers a rich set of covariates for this propensity score weighting procedure.

In particular, we control for employment and earnings information in the 4 years prior to job

displacement as well as age, occupational type, firm size, and industry affiliation. Sampling

weights based on the logit model assure that the distribution of pre-displacement characteristics

is similar among displaced and control observations.

To model employment careers we proceed by constructing a quarterly time series of labor

market states for each individual. Specifically, we define the following categories: 1 denotes

employed, 2 sick leave, 3 out of labor force (registered as unemployed or otherwise out of labor

force), 4 retired (claiming government pension benefits). Retirement is coded as an absorbing

state as virtually nobody in Austria returns to employment once he/she enters the public pension

system. These time series of labor market states are the basis of our empirical Markov chain

clustering method.

To study characteristics that are correlated with different career patterns after job loss, we

focus on variables which are pre-determined at the time of plant closure. Control variables

include the worker’s age at job displacement, the years of labor market experience, the occu-

pational type (i.e. blue versus white collar), and the income in the quarter preceding the job

displacement. Moreover, we control for firm size and industry. For computational reasons we

transform all these variables into discrete categories; for summary statistics see Table 1.

3 Time-varying Mixture-of-Experts Markov Chain Clustering

As for many data sets available for empirical labor market research, the structure of the indi-

vidual level transition data introduced in Section 2 takes the form of a discrete-valued panel

data. The categorical outcome variable yit assumes one out of four states, labeled by {1, 2, 3, 4},
and is observed for N individuals i = 1, . . . , N over Ti quarters for a maximum of 10 years, i.e.

Ti ≤ 40 quarters. Moreover, we restrict ourselves to Ti ≥ 4. For each individual i, we model

the state of the outcome variable yit in period t to depend on the past state yi,t−1 through a

time-inhomogeneous first order Markov transition model.
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Worker’s age (in years)

Age 35–39 28 %
Age 40–44 28 %
Age 45–49 23 %
Age 50–55 21 %

Worker’s professional experience (in days)

Experience ≤ 1675 days 33 %
Experience from 1676 to 3938 days 31 %
Experience ≥ 3939 days 36 %

Worker’s income at time of plant closure

Income in lowest tertile 14 %
Income in middle tertile 32 %
Income in highest tertile 54 %

Firm’s attributes

Firm size ≤ 10 42 %
Firm size from 11 to 100 41 %
Firm size > 100 17 %

Economic sector: service 31 %
Economic sector: industry 32 %
Economic sector: seasonal 2 %
Economic sector: unknown 35 %

White-collar workers 56 %
Blue-collar workers 44 %

Table 1: Descriptive statistics for the control variables of all displaces persons in the mixture-
of-experts model to explain group membership.

To capture the presence of unobserved heterogeneity in the dynamics in our discrete-valued

panel data, we apply model-based clustering based on Markov transition models. The central

assumption in model-based clustering is that the N time series in the panel arise from H hidden

classes; see Frühwirth-Schnatter (2011). Within each class, say h, all time series can be char-

acterized by the same data generating mechanism, called a clustering kernel, which is defined

in terms of a probability distribution for the time series yi = {yi1, . . . , yi,Ti}, depending on an

unknown class-specific parameter ϑh. A latent cluster indicator Si taking a value in the set

{1, . . . ,H} is introduced for each time series yi to indicate which class the individual i belongs

to, i.e. p(yi|Si,ϑ1, . . . ,ϑH) = p(yi|ϑSi).

To address serial dependence among the observations for each individual i, model-based

clustering of time series data is typically based on dynamic clustering kernels derived from first

order Markov processes, where the clustering kernel p(yi|ϑh) =
∏Ti

t=1 p(yit|yi,t−1,ϑh) is formu-

lated conditional on the initial state yi0, which in our application is equal to 1 (employed) for all

individuals. For discrete-valued time series, persistence is typically captured by assuming that

yi follows a time-homogeneous Markov chain of order one. Applications of time-homogeneous

Markov Chain clustering to analyze individual wage careers in the Austrian labor market include

Pamminger and Frühwirth-Schnatter (2010), Pamminger and Tüchler (2011), and Frühwirth-

Schnatter et al. (2012).

However, the assumption that the long-run career paths of workers who experienced plant

closure follow a time-homogeneous Markov chain is not realistic (see Ichino et al. (2016), Fig-

ure 2). A descriptive investigation of the evolution of the employment rate over distance to

plant closure reveals that the employment rate does not converge to a steady state, but rather

declines steadily with increasing distance to plant closure. Homogeneity would imply that the

employment rate as well as all other state probabilities converge to a steady state within the

observation period, both within each cluster as well marginalized over all clusters.

To obtain such a non-stationary pattern, we need to assume that the transition probabilities

between the various states change with distance to plant closure. Furthermore, it is to be
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expected that there is a lot of heterogeneity in this time-varying pattern across workers.

To capture this non-stationary feature of our data, we develop in the present paper Markov

chain clustering based on a time-inhomogeneous first order Markov chain model with class-

specific time-varying transition matrices ϑh = (πh, ξh1, . . . , ξh10) as clustering kernel. More

specifically, we assume that the transition behavior changes with distance to plant closure. Since

the initial state is employment (i.e. yi0 = 1) for all workers, the first transition is described by the

row vector πh = (πh,1, . . . , πh,4), containing the cluster-specific probability distribution of the

states yi1 at the end of the first quarter after plant closure. The transition matrix ξh1 describes

the transition behavior between the various states in quarter two to four after plant closure,

while the remaining transition matrices ξhy, y = 2, . . . , 10, describe the transition behavior for

all four quarters in year y after plant closure. Since the fourth state, namely retirement, is

an absorbing state, each of these time-varying transition matrices ξhy consists of three rows

ξhy,j· = (ξhy,j1, . . . , ξhy,j4), j = 1, 2, 3, representing a probability distribution over the states

{1, 2, 3, 4}, i.e.
∑4

k=1 ξhy,jk = 1. Hence the clustering kernel reads:

p(yi|ϑh) = p(yi,−1|yi1, ξh1, . . . , ξh10)p(yi1|Si = h,πh), (1)

where the truncated time series yi,−1 = {yi2, . . . , yi,Ti} is described by time-varying transition

matrices changing every year:

p(yi,−1|yi1, ξh1, . . . , ξh10) =
10∏
y=1

3∏
j=1

ξ
Niy,jk

hy,jk , (2)

with transition probabilities ξh1,jk = Pr(yit = k|yi,t−1 = j, Si = h, t ∈ {2, 3, 4}), and ξhy,jk =

Pr(yit = k|yi,t−1 = j, Si = h, t ∈ {4(y − 1) + 1, . . . , 4y}) for y = 2, . . . , 10. For each time series

yi,−1, the cluster-specific sampling distribution (2) depends on the number of transitions from

state j to state k observed in each year, i.e. Ni1,jk = #{yi,t−1 = j, yit = k|t ∈ {2, 3, 4}} and

Niy,jk = #{yi,t−1 = j, yit = k| t ∈ {4(y − 1) + 1, . . . , 4y}} for y = 2, . . . , 10. If Ti < 40, then all

transition counts are zero for all unobserved quarters.

The choice of the distribution for the state yi1 at the end of the first quarter in (1) has

to address the problem with initial conditions in non-linear dynamic models with unobserved

heterogeneity, see e.g. Heckman (1981) and Wooldridge (2005). This issue is relevant for cases,

where unobserved heterogeneity is either captured through an individual effect Si following a

continuous distribution, but, as discussed in Frühwirth-Schnatter et al. (2012), also for models

where Si follows a discrete distribution as for model-based clustering based on transition models.

The key issue is to allow for dependence between the initial state yi1 and the latent variable Si,

which can be achieved by allowing the prior distribution of Si to depend on yi1, an approach that

has been pursued for the analysis of labor market entry and earnings dynamics in Frühwirth-

Schnatter et al. (2012).

In the present paper, we factorize the joint distribution of yi1 and Si in a different way as

p(yi1, Si|·) = p(yi1|Si,πSi)p(Si|β2, . . . ,βH ,xi), where the entire initial state distribution changes
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across the clusters, i.e.:

p(yi1|Si = h,πh) =
4∏

k=1

π
Ii,k
h,k , (3)

where πh,k = Pr(yi1 = k|Si = h) and Ii,k = I{yi1 = k} is an indicator for a worker’s state at the

end of the first quarter after plant closure.

Following the mixture-of-experts approach introduced for Markov chain clustering methods

by Frühwirth-Schnatter et al. (2012), the prior distribution of the latent indicator Si is influenced

by exogenous covariates and is modeled as following a multinomial logit (MNL) model:

Pr(Si = h|β2, . . . ,βH ,xi) =
exp (xiβh)

1 +
∑H

l=2 exp (xiβl)
, h = 1, . . . ,H, (4)

where the row vector xi = (1, xi1, . . . , xir) includes the constant 1 for the intercept in addition

to the exogenous covariates (xi1, . . . , xir). For identifiability reasons β1 = 0, which means that

h = 1 is the baseline class and βh is the effect on the log-odds ratio relative to the baseline.

For estimation, we pursue a Bayesian approach. For a fixed number H of clusters, Markov

chain Monte Carlo (MCMC) methods are used, to estimate the latent cluster indicators S =

(S1, . . . , SN ) along with the unknown cluster-specific parameters θH = (ϑ1, . . . ,ϑH ,β2, . . . ,βH)

from the data y = (y1, . . . ,yN ). To sample from the posterior distribution p(θH ,S|y), we extend

the sampler introduced in Frühwirth-Schnatter et al. (2012) to time-inhomogeneous mixture-of-

experts Markov chain clustering; see Appendix A for computational details.

4 Analysing Plant Closure Effects

To identify clusters of individuals with similar career patterns after plant closure, we apply

Markov chain clustering for 2 up to 6 clusters. All computations are based on the prior distri-

butions introduced in Appendix A. For each number H of clusters we simulate 15 000 MCMC

draws after a burn-in of 10 000 draws and use them for all posterior inference reported below.1

In the following, we start with a description of model selection and posterior classification.

Second, we discuss the cluster-specific post-displacement career patterns that are implied by the

estimated transition processes. Third, we describe the correlation between cluster membership

and workers’ characteristics. Finally, we compare the career paths of displaced workers with a

control group who did not experience a job loss.

4.1 Model Selection

Statistical model selection criteria such as the AIC, the BIC or the AWE criterion as discussed

e.g. in Frühwirth-Schnatter (2011) could be applied to the present data to select the number H of

clusters, however, these statistical criteria typically are not unambiguous and do not give a clear

answer. For this reason, we select the number of clusters based on the economic interpretability

1The computing time for all 25 000 draws is approx. 15 minutes for H = 2, 1 hour and 2 minutes for H = 3, 1
hour and 33 minutes for H = 4, 2 hours and 21 minutes for H = 5 and 4 hours and 45 minutes for H = 6 on a
Lenovo Thinkpad T410s laptop equipped with 4 GB RAM and an Intel Core i5 processor with 2.67 GHz.
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of the different results. We choose the model where the clusters are sufficiently distinct, both

in statistical terms as well as in terms of allowing a meaningful economic interpretation. As we

will discuss below, we can conveniently interpret five distinct clusters of career patterns, which

are characterized by a combination of mobility/persistence and attachment to the labor force: a

Low-attached as well as a Highly attached cluster are characterized by low and high levels

of attachment to the labor market, respectively, with high persistence in the corresponding states;

a Mobile + low-attached and a Mobile + highly attached cluster are characterized by

a much higher level of mobility together with low and high levels of attachment to the labor

market, respectively; and, finally, a cluster of Retiring, where retirement is the predominant

state.
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Figure 1: Employment profiles of typical cluster members within each cluster, showing the
10th, 25th, 50th, 70th, 100th, 200th and 350th highest classification probabilities. 1 = employed,
2 = sick, 3 = out of labor force, 4 = retirement.

In a six-cluster model, the distinctions between different clusters are less clear. Therefore,

in the following, we concentrate on the five-cluster solution chiefly because this solution led to

meaningful interpretations from an economic point of view.

4.2 Posterior Classification

Individuals are assigned to the five clusters of career-patterns using the posterior classification

probabilities tih(θ5) = Pr(Si = h|yi,θ5) given by eq. (8) in the Appendix. The posterior

expectation t̂ih = E(tih(θ5)|y) of these probabilities is estimated by evaluating and averaging

tih(θ5) over all MCMC draws of θ5. Each worker is then allocated to that cluster Ŝi, which
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exhibits the maximum posterior probability, i.e. Ŝi is defined in such a way that t̂i,Ŝi
= maxh t̂ih.

The closer t̂i,Ŝi
is to 1, the higher is the segmentation power for individual i.

 Low−attached:   21 % 
 Highly attached:
    44 % 

  Mobile + low−attached:   8 % 
 Mobile + highly attached:  7 %  

 Retiring:   20 % 

 Low−attached:   16 %  Highly attached:
    55 % 

  Mobile + low−attached:   4 %  Mobile + highly attached:  4 %  

 Retiring:   21 % 

Figure 2: Group sizes for the five cluster solution. The cluster sizes are calculated based
on the posterior classification probabilities. Left hand side: workers experiencing plant closure
(displaced); right hand side: workers not experiencing plant closure (controls)

To obtain a first understanding of the transition patterns in the various clusters, typical group

members are selected for each cluster and their individual time series are plotted in Figure 1.

The career patterns are fairly similar within each cluster, but very different across clusters.

Based on the posterior classification probabilities of cluster membership for each of the N

workers, we compute the average size of each cluster. The corresponding shares of individuals in

each cluster are shown in the left hand graph of Figure 2. The displaced workers in our sample

are relatively unevenly distributed across the five clusters: 21 % of the persons belong to the

Low-attached, 44 % to the Highly attached, 8 % to the Mobile + low-attached, 7 %

to the Mobile + highly attached, and 20 % to the Retiring cluster.

4.3 Analyzing Career Mobility

To analyze career mobility patterns in the five different clusters we investigate for each clus-

ter the posterior distribution of the time-varying cluster-specific transition matrices ϑh =

(πh, ξh1, . . . , ξh10) for h = 1, . . . , 5. For all workers in our sample, the transition process starts

with the shock of loosing employment due to plant closure. Thus the vector πh defines, for

each cluster, the worker’s state distribution πh,1 = πh at the end of the first quarter after plant

closure. The corresponding posterior expectation E(πh,1|y) is shown for each cluster in Figure 3

at t = 1.

The time-varying cluster-specific transition matrices are visualized in Figure 4 for selected

transition probabilities of particular interest. In particular, the columns of Figure 4 display the

probabilities of following events: persistence in the employment state (i.e. j = 1 → k = 1),

transition from employment to out of labor force (i.e. j = 1 → k = 3), transition from out

of labor force back to employment (i.e. j = 3 → k = 1), and transition from employment to

retirement (i.e. j = 1 → k = 4). For each of the corresponding transition probabilities ξhy,jk,

the marginal posterior distribution p(ξhy,jk|y) is represented for each of the five clusters by a
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sequence of ten box plots of the corresponding MCMC draws, over the yearly distance to plant

closure y = 1, . . . , 10.

The numerical estimates and standard deviations for the initial distribution πh as well as

the above selected transition probabilities ξhy,jk are reported in Table 2.

h πh,1 πh,2 πh,3 πh,4
Low-attached 0.292 (0.021) 0.021 (0.005) 0.684 (0.022) 0.002 (0.002)

Highly attached 0.630 (0.011) 0.010 (0.002) 0.359 (0.011) 0.001 (0.001)
Mobile + low-attached 0.294 (0.026) 0.030 (0.010) 0.672 (0.028) 0.003 (0.004)

Mobile + highly attached 0.330 (0.026) 0.038 (0.012) 0.627 (0.027) 0.005 (0.006)
Retiring 0.422 (0.016) 0.101 (0.009) 0.449 (0.016) 0.027 (0.005)

year y j = 1→ k = 1 j = 1→ k = 3 j = 3→ k = 1 j = 1→ k = 4
Low-attached

y = 1 0.918 (0.009) 0.077 (0.009) 0.062 (0.005) 0.001 (0.001)
y = 5 0.956 (0.006) 0.037 (0.005) 0.013 (0.002) 0.005 (0.001)
y = 10 0.974 (0.006) 0.024 (0.005) 0.010 (0.002) 0.000 (0.000)

Highly attached
y = 1 0.978 (0.002) 0.019 (0.001) 0.545 (0.022) 0.000 (0.000)
y = 5 0.989 (0.001) 0.007 (0.001) 0.416 (0.022) 0.000 (0.000)
y = 10 0.978 (0.001) 0.015 (0.001) 0.071 (0.019) 0.000 (0.000)

Mobile + low-attached
y = 1 0.860 (0.014) 0.130 (0.013) 0.232 (0.020) 0.001 (0.001)
y = 5 0.817 (0.012) 0.158 (0.010) 0.154 (0.013) 0.001 (0.001)
y = 10 0.856 (0.018) 0.117 (0.016) 0.078 (0.009) 0.001 (0.001)

Mobile + highly attached
y = 1 0.841 (0.012) 0.146 (0.012) 0.506 (0.024) 0.003 (0.001)
y = 5 0.821 (0.008) 0.158 (0.007) 0.740 (0.019) 0.003 (0.001)
y = 10 0.822 (0.013) 0.146 (0.011) 0.540 (0.037) 0.005 (0.002)

Retiring
y = 1 0.938 (0.007) 0.021 (0.004) 0.221 (0.012) 0.021 (0.005)
y = 5 0.955 (0.004) 0.024 (0.003) 0.011 (0.003) 0.000 (0.000)
y = 10 0.722 (0.031) 0.052 (0.012) 0.040 (0.009) 0.187 (0.027)

Table 2: Posterior expectations E(πh,k|y) and, in parenthesis, posterior standard deviations
SD (πh,k|y) of the state probability πh,k at the end of the first quarter after plant closure for
all states k = 1, . . . , 4 as well as posterior expectations E(ξhy,jk|y) and, in parenthesis, posterior
standard deviations SD (ξhy,jk|y) of selected transition probabilities ξhy,jk for selected years y
in the various clusters. 1 = employed, 2 = sick, 3 = out of labor force, 4 = retirement.

To evaluate the long-term effect of the job loss experienced by all workers, the state distri-

bution πh,t was computed also for all subsequent quarters t = 2, . . . , 40, individually for each

cluster. Given the distribution of states at the end of the first quarter, described by πh, each

state distribution πh,t is computed by taking into account that the transition process evolves

according to a time-inhomogenous Markov process:

πh,t = πhξh,1→t, h = 1, . . . ,H. (5)

Starting from ξh,1→2 := ξh1, the transition matrix ξh,1→t from the first to the qth quarter in year
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y, i.e. t = 4(y−1)+q, can be computed for t = 3, . . . , 40 recursively from the sequence of cluster-

specific time-inhomogenous transition matrices by ξh,1→t = ξh,1→(t−1)ξhy. Figure 3 shows the

evolution of the posterior expectations E(πh,t|y) of the cluster-specific state distribution over

distance t to plant closure.2

4.4 Understanding the Clusters

In this subsection we present a synthesis of posterior inference in Figure 1 to Figure 4 and

Table 2 and interpret the estimated transition processes after job displacement for the different

clusters. The figures highlight remarkable differences across clusters in the state distribution at

the end of the first quarter, as well as in the subsequent transition patterns. We will now discuss

these career patterns cluster by cluster.

Highly attached is the largest cluster with about 44% of the observations. Workers in

this cluster have a relatively high probability to be employed again within one quarter after

plant closure (63%), whereas this probability is considerably smaller for all other clusters. Only

35.9% of the cluster members are out of labor force one quarter after plant closure. For workers

in this cluster, the probability to remain employed is close to 1 over the whole 10 years (98.9%

five and 97.8% ten years after plant closure). As a consequence, for workers in this cluster the

risk of another job loss is very small (0.7% five and 1.5% ten years after plant closure). In the

unlikely event that these workers loose their job, they have quite a good chance to move back

into employment within one quarter, however, with increasing distance to plant closure, the

chance declines and is as small as 7.1% after 10 years.

Workers in the Low-attached cluster, the second largest cluster covering about 21% of the

sample, are less successful than Highly attached in finding a new job in the first quarter after

plant closure (only about 30%) and the majority (68.4%) are still out of labor force. The pattern

in the first quarter after plant closure is similar for workers in the Mobile + low-attached

and Mobile + highly attached clusters. Workers in these three clusters obviously suffer

from the plant closure, at least in the short run.

What distinguishes workers in Low-attached from Mobile + low-attached and Mo-

bile + highly attached is the subsequent transition behavior. Most strikingly, among Low-

attached workers the chance of moving from out of labor force back into employment is ex-

tremely low in the years following plant closure and even decreases, being equal to only 1.3%

five and 1% ten years after plant closure. In contrast, workers in Mobile + low-attached

and Mobile + highly attached recover more easily from job displacement. Members of

Low-attached hardly ever move back into employment after having lost their job due to plant

closure. However, in the unlikely event, that workers in this cluster find a job, they have quite

a good chance to keep their job, and this chance is larger than for Mobile + low-attached

and Mobile + highly attached.

While Mobile + low-attached and Mobile + highly attached are similar to Low-

attached immediately after plant closure, they show a subsequent transition pattern between

out of labor force and employment that is quite different. Both clusters have about the same

probability of remaining employed, which is nearly constant over time and, on average, equal

2The posterior expectation is estimated by computing πh,t for t = 1, . . . , 40 for all 15 000 MCMC draws and
averaging the resulting draws of πh,t over all draws for each quarter t.
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to 82%. They have a similar transition pattern from employment back into out of labor force,

which again is nearly constant over time and is, on average, equal to about 15%. Members in

both clusters have a good chance to move back into the labor market after plant closure, but

they are at a high risk to loose their job again. These two clusters suffer from an intrinsically

high risk of being out of labor force that appears to be unrelated to plant closure.

The main distinction between Mobile + low-attached and Mobile + highly attached

is how the transition probability from out of labor force back into employment evolves with

distance to plant closure. For workers in Mobile + highly attached the chance of moving

back into the labour market is higher than in Mobile + low-attached and even increases

in the first five years after plant closure. The corresponding transition probability is as large as

74% five years and still equal to 54% ten years after plant closure. This leads to career patterns

that are characterized by frequent transitions between employment and out of labor force, see

also the typical members in Figure 1.

While Mobile + low-attached is similar to Mobile + highly attached in several

respects, it is mainly the transition pattern from out of labor force back into employment that

leads to career paths that are quite distinctive from Mobile + highly attached. Evidently,

for Mobile + low-attached the transition probability from out of labor force back into

employment is much smaller than in Mobile + highly attached and even declines over

distance to plant closure. The corresponding transition probability is only 15% five years and

as small as 7.8% ten years after plant closure. Workers in this cluster also switch between

employment and being out of labor force; however, they have a much higher risk to remain out

of labor force than workers in Mobile + highly attached. As a consequence, this leads to

much longer spells of being out of labor force than for workers in Mobile + highly attached,

where this duration is very short, see again Figure 1.

Workers in the Retiring cluster are more successful than Low-attached, Mobile + low-

attached, and Mobile + highly attached to find a job in the first quarter after plant closure

(42.2%), but less successful than Highly attached. This is the only cluster where immediate

transition into retirement after plant closure happens with positive probability (2.7%), whereas

this probability is practically 0 for all other clusters. Workers in this cluster also have a much

higher risk (10.1%) to be on sick leave immediately after plant closure than workers in all other

clusters. In addition, this cluster is characterized by an increasing transition probability from

employment into retirement which is as large as 18.7% ten years after plant closure. For all

other clusters, this probability practically remains zero. As a consequence, the probability to

remain employed, which is relatively high in the first five or six years after plant closure, declines

in later years and is the smallest among all clusters (72.2%) after 10 years.

The importance of using a time-inhomogeneous rather than a time-homogeneous Markov

process for our application can be best seen in Figure 3 where the transition matrices change

over time in all clusters. The largest changes can be seen in the clusters Retiring and Mo-

bile + low-attached, which is due to the varying importance of the states employment and

retirement. The inhomogeneous modeling approach deals with such non-linear patterns in a

very flexible way. Our time series data, where a stable equilibrium process is shocked by a

plant closure, require flexibility in particular at the beginning. The importance of allowing for

a separate transition process in the first quarter can clearly be seen in the large turbulence in

the first year in Figure 3.
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Figure 3: Posterior expectation of the distribution πh,t over the 4 states (1 = employed, 2 = sick,
3 = out of labor force, 4 = retirement) after a period of t quarters in the various clusters (workers
experiencing plant closure).
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j = 1 → k = 1 j = 1 → k = 3 j = 3 → k = 1 j = 1 → k = 4

Low−attached (21%)

Highly attached (44%)

Mobile + low−attached (8%)

Mobile + highly attached (7%)

Retiring (20%)

Figure 4: Visualization of the posterior distribution of 4 selected time-varying transition prob-
abilities from state j to state k in the various clusters, obtained by time-inhomogeneous Markov
chain clustering. The first box plot in columns 1, 2 and 4 displays the posterior distribution
of the state probability πh,k at the end of the first quarter after plant closure for each cluster
h. The remaining 10 box plots display the posterior distribution of the transition probabilities
ξhy,jk over the years y = 1, 2, . . . , 10 for each cluster h. 1 = employed, 2 = sick, 3 = out of labor
force, 4 = retirement.
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Highly attached Mobile Mobile Retiring
+ low-attached + highly attached

Intercept -1.522 (0.177) -0.762 (0.249) -3.002 (0.261) -4.114 (0.294)
Age 35–39 (basis)
Age 40–44 0.220 (0.106) 0.334 (0.163) 0.201 (0.175) 0.307 (0.323)
Age 45–49 0.061 (0.118) 0.160 (0.186) 0.001 (0.196) 2.398 (0.246)
Age 50–55 -2.740 (0.388) -0.988 (0.436) 0.725 (0.236) 4.410 (0.249)
Experience ≤ 1675 days (basis)
Experience from

1676 to 3938 days 0.404 (0.107) -0.687 (0.163) -0.318 (0.164) -0.010 (0.172)
Experience ≥ 3939 days 0.687 (0.108) -0.891 (0.190) -0.490 (0.176) 0.272 (0.163)
Blue collar 1.045 (0.111) 0.665 (0.183) 2.020 (0.179) 1.212 (0.166)
Income in lowest tertile (basis)
Income in middle tertile 1.235 (0.156) -0.134 (0.197) 0.469 (0.191) 0.274 (0.202)
Income in highest tertile 1.146 (0.153) -0.352 (0.186) -0.334 (0.213) 0.022 (0.201)
Firm size ≤ 10 (basis)
Firm size from 11 to 100 0.701 (0.100) 0.163 (0.159) 0.578 (0.155) 0.787 (0.157)
Firm size > 100 0.617 (0.142) -0.761 (0.286) -0.002 (0.233) 0.941 (0.190)
Economic sector: service (basis)
Economic sector: industry 0.368 (0.114) 0.314 (0.173) 0.785 (0.193) 0.253 (0.173)
Economic sector: seasonal -0.224 (0.318) -0.065 (0.490) 0.588 (0.534) 0.282 (0.465)
Economic sector: unknown 0.188 (0.103) -0.110 (0.164) 1.017 (0.179) 0.542 (0.165)

Table 3: Multinomial logit model to explain cluster membership in a particular cluster (base-
line: Low-attached); the numbers are the posterior expectation and, in parenthesis, the
posterior standard deviation of the various regression coefficients.

4.5 The Impact of Observables on Group Membership

After having established differences in labor market careers following plant closure across five

different clusters of workers, we are setting out to investigate how individual characteristics

relate to cluster membership. From a social policy point of view, it is interesting to understand

if the characteristics of a particular worker make him more prone to belong to a specific cluster.

In particular, we would like to answer questions such as: Is the career adjustment after plant

closure easier for younger workers than for older workers? Who might be forced into early

retirement? Do blue collar workers have a higher risk to belong to the Low-attached cluster

than white collar workers?

The mixture-of-experts approach allows to answer these and similar questions, since we

specify the prior probability of an individual to belong to a certain cluster by the multinomial

logit (MNL) model given in equation (4). The regression framework controls for the impact of

six covariates in the MNL model, namely age at the time of plant closure, experience, broad

occupational status (i.e. blue versus white collar), income, firm size, and the economic sector,

each with dummy coding. More specifically, we introduce five age groups (35-39, 40-44, 45-

49, 50-55), three levels of experience (low, medium, high), a dummy for white-collar workers,

three levels of income before plant closure (low, medium, high) based on the tertiles of the

15



general income distribution at time of plant closure, three categories of firm size (1-10, 11-100,

and more than 100 employees), and four broad economic sectors (service, industry, remaining

seasonal business (outside of hotel and construction), unknown); see also Table 1.

Bayesian inference for the regression parameters βh in the MNL model is summarized in

Table 3, which reports the posterior expectation and the posterior standard deviation of all

regression parameters relative to the baseline, which is equal to Low-attached.

To visualize the main results, Figure 5 shows to which extent the prior probabilities of

belonging to each of the five clusters are related to individual covariates; see also Table 4. For

this evaluation, all other control variables are set to their mean values observed in the sample.

The prior probability that a worker with certain predetermined characteristics belongs to any

cluster is computed for all MCMC draws and the reported values are the average over all the

MCMC draws. The diagrams can, therefore, be interpreted as giving the prior probability that

a worker belongs to one of these five clusters based solely on his known characteristics before

plant closure.

A worker’s broad occupational status is highly related to group membership; see Figure 5,

panel (a), as well as Table 4. Not surprisingly, white collar workers have a small prior probability

to belong to Mobile + highly attached (4%). Most strikingly, blue collar workers have about

half the risk of white collar workers to belong to Low-attached(18% versus 41%), which is a

specific feature of plant closure events, see also Schwerdt et al. (2010).

With respect to age at the time of plant closure, we see in Figure 5, panel (b), as well as

in Table 4 that all workers younger than 45 years have similar prior probabilities to belong to

the various clusters. Not surprisingly, young workers have a low probability to belong to the

Retiring cluster, but this probability strongly increases with age. While individuals with higher

ages often belong to the Retiring cluster, their probability of being in Highly attached is

reduced. For the oldest group, aged 50-55, the probability to be in the Retiring cluster is

particularly high (77%), while the probability to belong to Highly attached is negligible.

The probability to belong to Mobile + highly attached is practically independent of age

and the probability of belonging to Low-attached is slightly decreasing with age.

Work experience is less strongly related to group membership than age; see Figure 5, panel

(c), and Table 4. We see that the five clusters are most evenly distributed among individuals with

low levels of work experience. There is not much variation in cluster membership for individuals

with low levels of experience, while at high levels of experience Highly attached and Mobile

+ low-attached dominate. In particular, higher experience levels are correlated with higher

probability to belong to Highly attached and lower probability to belong to Mobile + low-

attached. Interestingly, the probability of belonging to Retiring is practically independent

of the amount of work experience. The pattern of distribution of cluster membership by tertiles

of pre-displacement income resembles that of experience; see Figure 5, panel (d), and Table 4.

Figure 5, panel (e) and (f), as well as Table 4 show that group membership also varies with

the size and industry affiliation of the firms from which workers are displaced. The groups with

the largest Low-attached portion are workers from small firms and from the service sector.

The largest portion of the Mobile + highly attached cluster is exhibited by the workers of

medium size firms and workers from seasonal business outside of hotel and construction.
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Figure 5: Impact of each covariate on the prior probability of a worker to belong to a certain
cluster: (a) occupational state, (b) age, (c) experience, (d) income at time of plant closure, (e)
firm size, (f) firm’s economic sector (for each single covariate, all other covariates are set to their
mean values observed in the sample).
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Low-attached Highly attached Mobile LA Mobile HA Retiring

White collar 0.408 0.382 0.082 0.044 0.085
Blue collar 0.181 0.478 0.071 0.145 0.125

Age 35–39 0.248 0.609 0.072 0.052 0.018
Age 40–44 0.207 0.634 0.084 0.053 0.021
Age 45–49 0.201 0.526 0.069 0.043 0.160
Age 50–55 0.131 0.022 0.015 0.057 0.775

Experience ≤ 1675 days 0.318 0.325 0.146 0.109 0.102
Experience from

1676 to 3938 days 0.301 0.459 0.070 0.075 0.096
Experience ≥ 3939 days 0.260 0.526 0.049 0.055 0.109

Income in lowest tertile 0.405 0.218 0.138 0.109 0.130
Income in middle tertile 0.251 0.461 0.075 0.107 0.105
Income in highest tertile 0.291 0.489 0.070 0.056 0.095

Firm size ≤ 10 0.368 0.370 0.106 0.076 0.081
Firm size from 11 to 100 0.238 0.480 0.080 0.087 0.114
Firm size > 100 0.266 0.493 0.036 0.055 0.149

Economic sector: service 0.345 0.426 0.088 0.049 0.093
Economic sector: industry 0.264 0.471 0.092 0.081 0.091
Economic sector: seasonal 0.280 0.418 0.064 0.109 0.129
Economic sector: unknown 0.297 0.440 0.080 0.077 0.105

Table 4: Displaced persons: Prior cluster probabilities for a single covariate. All other control
variables are set to their mean values observed in the sample.

4.6 Comparison to the control group

After analyzing the career paths of displaced workers that are described by the five separate

clusters, we turn to a comparison of the careers of displaced workers with a control group of

workers not affected by a plant closure. This gives us some insights in the counterfactual situation

that would have arisen if the plant closure had not taken place. To evaluate the counterfactual

career trajectories for each cluster, we perform a posterior classification of controls based on the

clustering model that was estimated for the displaced workers. In the following, we describe

the corresponding classification of the controls and the simulation of the counterfactual career

patterns in each cluster.

The selection of the control group as a weighted sample with similar pre-displacement char-

acteristics as the displaced group has been described in Section 2. The weighting procedure

ensures that displaced and controls are similar with respect to the covariates, which determine

prior group membership through the mixture-of-experts model specified in equation (4). The

only feature that distinguishes the two groups is the experience of a plant closure. It is evident

from Figure 3 that this shock has a dramatic effect on the state distribution πh of displaced

workers at the end of the first quarter, with a very high rate of being out of labor force for

practically all clusters. We thus have to take this event into account when simulating the career

trajectories of control group members.
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Our main modelling assumption is that the state distribution πh at the end of the first

quarter incorporates the entire effect of this shock. This means that the subsequent transition

behaviour is independent from whether a person in this cluster experienced plant closure or

not. The subsequent transition behaviour is characterized by the sequence of cluster-specific

time-inhomogenous transition matrices ξh = (ξh1, . . . , ξh,10) and the person’s given state at the

end of the first quarter. While the typical career transitions are assumed to be the same for all

persons within each cluster, regardless of whether the person experienced plant closure or not, it

is to be expected that the state distribution at the end of the first quarter after (potential) plant

closure is different for the displaced and the controls. Since the initial state yi0 is employment,

i.e. yi0 = 1, also for all controls, the first transition of the controls is described by a row vector

πc
h = (πch,1, . . . , π

c
h,4) being different from πh and containing the probability distribution over all

states at the end of the first quarter after plant closure for the controls. Our assumption implies

that beyond the first quarter, the transition matrices ξh1, . . . , ξh,10, which were estimated from

the displaced sample, can be used to classify the controls into the five clusters.

Based on this cluster model, the cluster assignment for control person i with observed

individual time series denoted by yc
i is performed by computing the posterior distribution

tcih(θ5) = Pr(Sc
i = h|yc

i ,θ5) of the class indicator Sc
i over the 5 clusters by means of Bayes’

rule:

tcih(θ5) ∝ p(yc
i,−1|yci1, ξh)p(yci1|Sc

i = h,πc
h)Pr(Sc

i = h|β2, . . . ,βH ,x
c
i ), h = 1, . . . , 5. (6)

In (6), p(yc
i,−1|yci1, ξh) is the clustering kernel based on a time-inhomogeneous first order Markov

chain as introduced in (2), whereas the cluster-specific state distribution πc
h = (πch,1, . . . , π

c
h,4)

for controls at the end of the first quarter after (potential) plant closure gives:

p(yci1|Sc
i = h,πc

h) =
4∏

k=1

(
πch,k

)Ci,k ,

with πch,k = Pr(yci1 = k|Sc
i = h) and Ci,k = I{yci1 = k} being an indicator for a non-displaced

worker’s initial state. Pr(Sc
i = h|β2, . . . ,βH ,x

c
i ) is the prior class assignment distribution in-

troduced in (4), which is based on the individual characteristics xc
i of the control person under

consideration.

Rather than estimating (ξ1, . . . , ξ5,β2, . . . ,β5) again for the control panel, we use the MCMC

draws obtained for the displaced persons to assign the individuals from the control panel to the

five clusters of career patterns during an MCMC-type algorithm. Only the cluster-specific state

distributions at the end of the first quarter are estimated by sampling πc
h for each cluster from

a Dirichlet distribution, πc
h|Sc,y ∼ D

(
g0,1 + Ch

1 , . . . , g0,4 + Ch
4

)
, where Ch

k =
∑

i:Si=hCi,k is the

total number of (non-displaced) workers in cluster h being in state k at the end of the first

quarter after potential plant closure and πc
h ∼ D (g0,1, . . . , g0,4) follows a Dirichlet prior with

hyperparameters analogous to those in Appendix A.

We assign individuals from the control panel using the posterior expectation t̂cih = E(tcih(θ5)|yc
i ).

t̂cih is estimated by evaluating and averaging tcih(θ5) as given by (6) using the 15 000 MCMC

draws of (ξ1, . . . , ξ5,β2, . . . ,β5) obtained for the panel of displaced workers and the 15 000

MCMC draws of πc
h obtained for the panel of controls.
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Figure 6: Posterior expectation of the distribution πc
h,t over the 4 states (1 = employed, 2 = sick,

3 = out of labor force, 4 = retirement) after a period of t quarters in the various clusters (control
group).
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Figure 7: Analysing the difference πh,k,t − πch,k,t in the probability to be in state k between
persons experiencing plant closure (πh,k,t = Pr(yit = k|Si = h)) and controls (πch,k,t = Pr(ycit =
k|Sc

i = h)) for the five clusters. Left hand side: posterior distribution of the difference πh,1,t −
πch,1,t in the probability to be in state “employed” between persons experiencing plant closure and
controls; right hand side: posterior expectation of the difference πh,k,t− πch,k,t in the probability
to be in state k between persons experiencing plant closure and controls (1 = employed, 2 = sick,
3 = out of labor force, 4 = retirement).
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Each worker from the control panel is then allocated to that cluster Ŝc
i which exhibits the

maximum posterior probability, i.e. Ŝc
i is defined in such a way that t̂c

i,Ŝc
i

= maxh t̂
c
ih.

Based on the posterior classification Ŝc
i of all controls, we compute the size of each cluster for

the controls. The distribution of individuals in the displaced and control group across clusters is

shown in Figure 2 in the top and bottom graph, respectively. The figure shows that in absence

of the plant closure event the cluster Highly attached would be considerably larger. The size

of the Retiring cluster does not differ much when comparing displaced and control persons,

whereas the three remaining clusters are significantly smaller in the absence of a plant closure.

Figure 6 shows the evolution of the posterior expectations E(πc
h,t|y) of the cluster-specific

state distribution πc
h,t = πc

hξh,1→t over distance t to plant closure for the control group, where

the transition matrix ξh,1→t has been defined in (5). Turning to the impact of job displacement

from plant closure on career trajectories in the different clusters, the left hand side of Figure 7

shows the posterior distribution of the difference Pr(yit = 1|Si = h) − Pr(ycit = 1|Sc
i = h) =

πh,1,t− πch,1,t for the employment states between displaced and control individuals over distance

t to plant closure. Career paths of displaced individuals are characterized by significantly lower

employment rates in the initial periods after plant closure throughout all clusters, but eventually

employment rates of both groups converge to each other. The speed of convergence varies by

cluster, with the fastest rates of convergence occuring in Highly attached and Mobile +

highly attached and the lowest rate occuring in Low-attached.

Another way to interpret career trajectories in the displaced and counterfactual cases is a

direct comparison of Figure 3 and Figure 6, which show the posterior expectation of πh,k,t =

Pr(yit = k|Si = h) and πch,k,t = Pr(ycit = k|Sc
i = h) for all labor market states k = 1, . . . , 4 by

cluster. During the first 8 to 12 quarters counterfactual trajectories in all clusters are dominated

by the employment state. At larger distances from the job displacement shock, profiles of

displaced and control individuals become very similar, as is also evident from the right hand

side of Figure 7.

5 Concluding Remarks

In this paper, we have analysed labour market data from Austria on discrete labor market

transitions after a plant closure, where we follow workers over ten years. Economists have shown

that the loss of a job due to a plant closure can have major disruptive effects on future careers

of workers (Jacobson et al. (1993), Fallick (1996) or Ichino et al. (2016)). They studied only

plant closure effects for average persons, whereas our analysis applies model-based clustering

to explicitly address unobserved heterogeneity in reaction to loosing a job due to an exogenous

event such as a plant closure.

Modelling workers’ transition patterns in such a setting, however, has to address several

issues: i) transition patterns immediately after the job loss are very specific, and ii) moreover,

as workers age transitions into sick leave and retirement spells become more prevalent. Such –

predictable – changes of transitions over the life cycle cannot be handled, if time-invariant tran-

sition matrices in each cluster are assumed as in Pamminger and Tüchler (2011) or Frühwirth-

Schnatter et al. (2012). To address these issues, we developed and applied a more general method

of Markov chain clustering analysis, based on inhomogeneous first order Markov transition pro-
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cesses with time-varying transition matrices. As in previous work, a mixture-of-experts model

is applied that allows the prior probability to belong to a certain cluster to depend on a set of

covariates via a multinomial logit model.

For the plant closure data, this clustering procedure provides us with five distinctive clusters

which are characterized by a combination of mobility/persistence and attachment to the labor

force. Our analysis allows to distinguish between workers who can cope quite easily with a job

loss and those who suffer large losses over extended periods of time. It turns out that around

50% of workers are highly attached after a plant closure, whereas 30% are low-attached – i.e.

suffer large employment losses – and 20% belong to a group which takes early retirement as an

option.

The model-based clustering approach developed in this paper for the analysis of the plant

closure data might be useful in other areas of applied research, whenever transition processes

have to be modelled that are not necessarily stationary over time. This situation typically occurs

when transition processes are analyzed over the entire life cycle of an entity, and transition rates

differ between the beginning and the end of the life cycle. Other reasons for nonstationarity are

shocks to the stationary transition processes caused by events out of the entities’ control, such

as stock market crashes or natural disasters. In these cases the patterns of transition during the

recovery phase may differ significantly from stationary transitions.
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A Computational Details

In this section, we summarize the Bayesian approach toward estimating the unknown param-

eters θH = (ϑ1, . . . ,ϑH ,β2, . . . ,βH) and the latent cluster indicators S = (S1, . . . , SN ) from

categorical panel data y = {y1, . . . ,yN} for a fixed number H of clusters.

In a Bayesian framework, estimation of the unknown parameters θH is based on the posterior

distribution p(θH |y) of θH given y. Using Bayes’ theorem, the posterior distribution p(θH |y),

given by p(θH |y) ∝ p(y|θH)p(θH), is derived as the product of the prior distribution p(θH) and

the observed-data (mixture) likelihood function p(y|θH) given by

p(y|θH) =

N∏
i=1

(
H∑

h=1

p(yi|ϑh) Pr(Si = h|β2, . . . ,βH)

)
, (7)

where p(yi|ϑh) is the clustering kernel defined in (1) and the prior probability Pr(Si = h|β2, . . . ,βH)

is given by the mixture-of-experts model (4).

Concerning the prior distribution p(θH), we assume prior independence between the param-

eters (β2, . . . ,βH), fully specifying the mixture-of-experts model, and the class-specific parame-

ters (ϑ1, . . . ,ϑH) of the clustering kernel. All H parameter vectors βh of regression coefficients

are assumed to be independent a priori, each following a standard normal distribution of di-

mension r+ 1. This means that also the individual regression coefficients inside a single vector

βh = (βh0, . . . , βhr) are independent a priori, each having a N (0, 1) distribution.

The prior distribution for each class-specific time-varying transition matrix ϑh is composed of

priors being conditionally conjugate to the time-varying Markov chain clustering kernel p(yi|ϑh)

defined in (1). This choice implies that each state distribution πh follows a priori a Dirich-

let distribution D (g0,1, . . . , g0,4) with hyperparameters g0,1, . . . , g0,4. Furthermore, the three

rows ξhy,1 ·, . . . , ξhy,3 · of all transition matrices ξhy, y = 1, . . . , 10, h = 1, . . . ,H, are indepen-

dent a priori, each following a Dirichlet distribution D (e0,yj1, . . . , e0,yj4) with hyperparameters

e0,yj1, . . . , e0,yj4, for j = 1, 2, 3.

We use empirical transition counts to define weakly informative hyperparameters for these

prior distributions. More specifically, we define the 3 × 4 empirical initial count matrix N0 =

(N0
jk), where for each state k = 1, . . . , 4 the element of the first row is equal to N0

1k := #{yi1 =

k for some person i}, and equal to 0 in the second and the third row (i.e. N0
jk = 0 for j = 2, 3).

Furthermore, we define for each year y = 1, . . . , 10 the 3× 4 empirical transition count matrix

Ny = (Ny
jk) with elements

Ny
jk = #{yi,t−1 = j, yit = k for some person i and some quarter t in year y},

for j = 1, 2, 3 and k = 1, 2, 3, 4. For each y = 0, 1, . . . , 10, we define the empirical transition

matrices Ñy := (Ny
jk/r

y
j ), where ryj :=

∑4
k=1N

y
jk are the row sums for each j = 1, 2, 3. In our

special application, we had all of these row sums greater than zero except for those two rows in

N0 whose sum is trivially equal to zero. The matrix N̄ is then defined as the average over these
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11 matrices:

N̄ = (N̄jk) :=
10∑
y=0

Ñy/11.

The initial distribution πh follows a D (g0,1, . . . , g0,4) prior with g0,k := max{17N̄1k, 0.5},
whereas the rows ξhy,1 ·, . . . , ξhy,3 · of each transition matrix ξhy follow a D (e0,yj1, . . . , e0,yj4)

prior with e0,yjk := max{17N̄jk, 0.5}.
Since the posterior distribution p(θH |y) does not have a closed form, Bayesian inference

is carried out by sampling M draws from the posterior distribution p(θH |y), using Markov

chain Monte Carlo (MCMC) methods based on data augmentation – a method that has been

introduced for finite mixture models by Diebolt and Robert (1994). See Gamerman and Lopes

(2006) for a review of MCMC-based statistical inference and Frühwirth-Schnatter (2006) for a

review of MCMC estimation of mixture models. The data augmentation technique underlying

MCMC estimation also provides estimates of the latent class indicators S = (S1, . . . , SN ).

After starting MCMC with some initial classification (partition) of the N subjects into H

disjoint classes, by assigning an initial value S0 to the latent cluster indicators S = (S1, . . . , SN ),

the following steps are repeated during a burn-in period to achieve convergence and additional

M iteration steps are performed to produce the desired number of draws:

(a) Sample the unknown parameters β2, . . . ,βH in the mixture-of-experts model (4) from the

conditional posterior distribution p(β2, . . . ,βH |S) ∝
∏N

i=1 p(Si|β2, . . . ,βH)p(β2, . . . ,βH).

(b) Sample the class-specific parameters ϑ1, . . . ,ϑH : draw ϑh independently from the condi-

tional posterior distribution p(ϑh|S,y) ∝
∏N

i=1 p(yi|ϑh)p(ϑh) for each h = 1, . . . ,H.

(c) Bayes’ classification for each subject i: determine a random clustering S = (S1, . . . , SN )

of the N subjects into H classes by sampling, independently for all i = 1, . . . , N , Si from

the discrete posterior distribution (Pr(Si = 1|yi,θH), . . . , Pr(Si = H|yi,θH)) given by:

Pr(Si = h|yi,θH) ∝ p(yi|ϑh)Pr(Si = h|β2, . . . ,βH), h = 1, . . . ,H, (8)

where p(yi|ϑh) is the clustering kernel defined in (1) .

For the mixture-of-experts model (4), the regression coefficients (β2, . . . ,βH) are sampled in

step (a) from the posterior distribution p(β2, . . . ,βH |S), where the likelihood p(Si|β2, . . . ,βH)

is obtained from the MNL model (4). To sample β2, . . . ,βH , we follow Frühwirth-Schnatter

et al. (2012) and apply auxiliary mixture sampling in the differenced random utility model

representation of the MNL model (Frühwirth-Schnatter and Frühwirth, 2010), because this

method seems to be superior to other MCMC methods in terms of the effective sampling rate.

Closed form Gibbs sampling of ϑh = (πh, ξh1, . . . , ξh10) in Step (b) is possible, since the

prior p(ϑh) is conditionally conjugate to the clustering kernel p(yi|ϑh). For each cluster, the

initial distribution πh and the various rows ξhy,j· of the time-varying transition matrix ξhy are

conditionally independent, given S and y. In each cluster, the initial distribution πh is sampled

from the Dirichlet distribution,

πh|S,y ∼ D
(
g0,1 + Ih1 , . . . , g0,4 + Ih4

)
, (9)
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where Ihk :=
∑

i:Si=h Ii,k is the total number of workers in cluster h being in state k at the end

of the first quarter after plant closure. Ihk is the sum of the individual indicators Ii,k, defined

after (3), over all cluster members.

The various rows ξhy,j· are sampled row-by-row from a total of 30H Dirichlet distributions:

ξhy,j·|S,y ∼ D
(
e0,yj1 +Nh

y,j1, . . . , e0,yj4 +Nh
y,j4

)
, y = 1, . . . , 10, j = 1, . . . , 3, h = 1, . . . ,H,

where Nh
y,jk :=

∑
i:Si=hNiy,jk is the total number of transitions from state j into state k observed

in cluster h in period y. Nh
y,jk is the sum of the individual counts Niy,jk, defined after (2), over

all cluster members.

At the end of Step (b) the following smoothing procedure is applied to the transition proba-

bilities. For each cluster h, for each row j and for each column k, we apply a standard polynomial

regression technique with a quadratic polynomial (Draper and Smith, 1998) to smooth the ten

time-varying transition probabilities ξh1,jk, ξh2,jk, . . . , ξh10,jk over time. After this smoothing

step, we consider each row ξhy,j. of the smoothed transition matrices ξhy. Whenever one ele-

ment of such a row is below zero, i.e. ξhy,jk < 0, it is set to zero: ξhy,jk = 0 and each row ξhy,j.
is normalized by ξhy,j./

∑4
k=1 ξhy,jk to ensure that all row sums are equal to one as required for

transition matrices.

We start MCMC estimation by choosing the initial values S0 for the cluster indicators S

through the following procedure. For each person i, we define a vector qi containing the four

indicators Ni0,k, where for each k = 1, . . . , 4,

Ni0,k :=

{
1 for yi,1 = k

0 else.

as well as all 120 empirical transition counts Ni1,jk and Niy,jk defined after formula (2). Adding

0.5 to each element of qi gives the vector vi. Clustering all N resulting vectors log(vi) into H

clusters using the k-means algorithm gives the desired initial classification S0.

To perform step (a) of our MCMC scheme, we also need starting values for the parameters

β2, . . . ,βH in the mixture-of-experts model in addition to S0. However, given both the covariate

vectors xi for all N persons under consideration as well as the initial classification vector S0, we

are dealing with a multinomial logit regression (MNL) model. We use the estimated coefficients

of this MNL model as starting values for β2, . . . , βH in our MCMC procedure. To this aim,

we applied the function multinom from the R package nnet.
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