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Abstract 

It is a well-known criticism that due to its exponential distribution, survey data on wealth is 

hardly reliable when it comes to analyzing the richest parts of society. This paper addresses 

this criticism using Austrian data from the Household Finance and Consumption Survey 

(HFCS). In doing so we apply the assumption of a Pareto distribution to obtain estimates for 

the number of households possessing a net wealth greater than four million Euros as well as 

their aggregate wealth holdings. Thereby, we identify suitable parameter combinations by 

using a series of maximum-likelihood estimates and appropriate goodness-of-fit tests to 

avoid arbitrariness with respect to the fitting of the Pareto-Distribution. Our results suggest 

that the alleged non-observation bias is considerable, accounting for about one quarter of 

total net wealth. The method developed in this paper can easily be applied to other countries 

where survey data on wealth are available. 

JEL: C46, C81, D31 

Keywords: wealth distribution, non-observation bias, Pareto distribution	
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1. Introduction 

Social stability and the accumulation of private wealth share an ambiguous relationship. 

From a historical perspective, social stability is a central prerequisite for the emergence of a 

significant amount of private wealth (Atkinson et al., 2011, Borgerhoff Mulder et al., 2009). 

However, since the accumulation of wealth is also self-enforcing – those who already 

possess wealth on average also experience larger gains – we find evidence for a successive 

concentration of wealth, which in turn undermines social and economic stability (Guttmann 

and Plihon, 2010, Stiglitz, 2012). In their work on the relation of inequality and social 

outcomes of various sorts, Wilkinson and Pickett (2007, 2009) explicitly address this 

relationship between social cohesion and stability on the one, and distributional outcomes on 

the other hand. This relation is also addressed by pointing to the causal link between higher 

inequality and social problems such as obesity, teenager pregnancies, low life expectancy, 

mental diseases, suicide, xenophobia, low educational achievement and imprisonment. 

In this context the improvement of computer-based evaluation methods and the increasing 

availability of survey data allow for a better assessment of wealth inequality. Moreover, 

standardized surveys like the Household Finance and Consumption Survey (HFCS) carried 

out by the European Central Bank (ECB) increase the comparability of the results between 

countries. For many countries of the Euro Zone, including Austria, the HFCS is the most 

comprehensive household-level assessment of private wealth and its disaggregated 

components (financial assets, tangible assets, debt etc,) that has been conducted so far, 

providing new and unprecedented opportunities of insight for these countries1. 

Nevertheless there are also problems concerning survey data, among those being false or 

no responses by the targeted households. Since the probability of false responses as well as 

the weight of the non-observation bias increase within the segment of the richest 

households, surveys are alleged to give an incomplete picture of the top of the wealth 

distribution. This paper aims to correct for the second bias – the case of non-observation. 

While the probability of non-observation is basically the same for all households in the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Previous studies on wealth and income in Austria face the problem of insufficient data. Therefore, 
most of them necessarily cover only subcomponents of total wealth (e.g. financial wealth). For 
instance, Beer et al. (2006) analyse Austrian National Bank survey data on financial wealth from 2004 
and find that the average amount of financial wealth held by Austrian households is 51,790 Euros 
(median: 21,855 Euros). Hahn and Magerl (2006) estimate the distribution of wealth and its 
components through the disaggregation of national accounts data leading to results largely consistent 
with those in Beer et al. (2006). The corresponding values to the results of Beer et al. (2006) in the 
HFCS are 47,991 Euros for the average and 14,071 for the median. However, a direct comparison 
between these two studies is difficult due to the significant time-lag as well as different definitions of 
financial wealth (e.g. in the HFCS the value assigned to self-employed business is not counted as 
financial wealth).	
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population and independent of the level of net wealth, only omissions at the top cause a 

significant bias, since in the segment of the very rich (those within the upper 0.5%-1%) only 

very few households decisively influence estimations for total wealth and wealth inequality 

due to the exponential properties of the underlying distribution (Hoeller et al., 2012, Avery et 

al. , 1986). In short: Wealth at the very top is so skewed, that the few households drawn from 

this segment are not considered as representative for the underlying population. While the 

survey design of the HFCS anticipates many known issues with survey data (like inconsistent 

responses or unavailability of households), the issue of underrepresentation of the wealthiest 

is not addressed by the Austrian variant of the HFCS.2 

In order to deal with this problem, we employ a novel methodical strategy by using the 

assumption of a Pareto distribution in combination with a non-arbitrary strategy to define 

appropriate minimal values for the latter (Clauset et al., 2009). In turn we reapply the Pareto-

Distribution to modify the original data by replacing the far-right tail of the existing HFCS data 

(roughly: the upper 0.5%-1%) with an estimation based on the Pareto distribution itself. While 

the assumption of a Pareto distribution is widely used in studying the distribution of income 

(see e.g. Feenberg and Poterba, 1993, Piketty, 2003, Piketty and Saez, 2003) and wealth 

(Alvaredo and Saez, 2009, Bach and Beznoska, 2011, Bach, Beznoska and Steiner, 2014, 

Durán-Cabré and Esteller-Moré, 2010, Kopczuk and Saez, 2004), we employ this 

assumption with respect to the specific task to correct the alleged non-observation bias 

inherent in survey data on wealth. Additionally, two subtle differences of our approach are 

related to the kind of data used and the technical aspects of estimating the Pareto 

distribution: With regard to the former we do not use tax returns data as most recent studies 

do (Alvaredo and Saez, 2009, Atkinson et al. 2011, Durán-Cabré and Esteller-Moré, 2010, 

Piketty and Saez 2003, Kopcuk and Saez 2004, Alvaredo et al., 2013), since such sources 

simply do not exist in the case of Austria (and, additionally, they vary in quality across 

countries due to different tax systems if existent). With regard to the latter the determination 

of the distribution parameters (especially the cut-off point) does not rely on theoretical 

considerations or a graphical identification based on a log-log graph (Cowell, 2011, Bach and 

Beznoska, 2011, Bach et al., 2014) but on solid statistical hypothesis testing (Clauset et al., 

2009). In doing so, we find that the underrepresentation of wealthy households in the 

Austrian HFCS sample is significant. After taking the Pareto correction into account, 

aggregate net wealth increases by 27% and the Gini coefficient rises from 0.76 to 0.81, 

indicating the importance of correcting this bias. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 For these reasons some countries participating in the HFCS implemented an oversampling strategy 
in order to dampen the resulting bias. Among these are Belgium, Germany, Greece, Spain, France, 
Cyprus, Luxembourg, Portugal and Finland (cf. ECB, 2013, 10)	
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The remaining paper is structured as follows: Section 2 describes the characteristics of the 

HFCS data and provides some descriptive statistics. The third section explains the method 

used to correct the original data and tests the validity of the underlying Pareto assumption. 

Section 4 presents the corrected data and compares the resulting descriptive statistics to the 

original HFCS statistics from section 2. Section 5 assesses the robustness of our findings by 

comparing them to non-estimated data and presents upper and lower bounds with respect to 

irregularities and outliers within the dataset. The final section concludes.  

 

2. Wealth in Austria: First evidence from the HFCS 

The aim of this section is to provide an overview of the HFCS method and data. Selected 

descriptive statistics provide a first glance on the distribution of wealth in Austria according to 

HFCS data. The results of the HFCS are thereby put in context to previous studies of the 

distribution of wealth in Austria. 

2.1. Household Finance and Consumption Survey (HFCS) 

The HFCS is the first comprehensive survey on tangible assets, financial wealth, liabilities 

and expenditures of private households in 15 countries of the Euro Zone (missing countries 

are Ireland and Estonia). Especially the potential comparability of the data, possible due to 

the ex-ante harmonization of the applied method in the various countries, potentially allows 

for worthwhile comparison between the Euro Zone countries. In Austria the Austrian National 

Bank conducted the survey in cooperation with the Institute for Empirical Social Studies 

(IFES). In what follows we give a brief overview of the survey design (for more details see 

Albacete et al., 2012). 

The basic reporting unit in the HFCS is the household, which is represented by the single 

person within the household, who felt most competent with regard to the household finances. 

The survey is based on personal interviews conducted between September 2010 and May 

2011. The initial sample consisted of 4,436 households. Eventually, 2,380 households have 

been successfully interviewed, indicating a response rate of roughly 56%. The sample 

selection is based on a stratified multistage cluster random sampling, implying that a 

multiple-stage form of quota sampling was applied to ensure that the randomly drawn 

participants adequately reflect the composition of the Austrian population. Stratification was 

based on Austrian NUTS-3 regions and municipality size in order to assure that households 

from different regions enter the sample proportionally. Data collection was based on 

computer-assisted interviews. 

It is typical for surveys, especially for those that try to evaluate sensitive information such as 

wealth, income or debt, that participants refuse or are unable to answer certain questions, 
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which can bias the results. In order to reduce such a bias, missing values were inserted ex 

post using multiple imputation. In this process, missing values are replaced through 

estimated values. This preserves the correlation structure of the dataset since one does not 

have to drop all incomplete observations. Imputation was repeated five times, producing five 

different samples – the so called implicates. Systematically biased answers (for example a 

higher proportion of wrong answers in certain segments of the wealth distribution) and the 

problem of non-observation of very rich households (problem of coverage), however, cannot 

be compensated for with this method. 

Finally, each observation in the dataset received a probability weight in order to reduce the 

sample variance and to adjust the sample to the statistical population. These weights try to 

correct for the different probabilities to be part of the observed sample (unequal probability 

sampling bias), the possible incompleteness of the target population (frame bias) and non-

response of targeted households (non-response bias). Hence, the final weights emerge from 

the design weights, which account for the unequal probability to be part of the sample, the 

post-stratification weights, which try to correct for erroneous exclusion (e.g. wrong postal 

address) of households, and the non-response weights. 

2.2. The Distribution of Wealth According to HFCS Data 

In this subsection we provide several descriptive statistics based on the original HFCS data 

to give a first impression regarding the wealth distribution in Austria. For a more exhaustive 

evaluation of these data see the much more detailed report by the Austrian National Bank 

(Albacete et al., 2012). In section 4 we replicate some of these statistics to illustrate the 

difference between the original data and the corrected sample. Each illustration accounts for 

all five implicates as well as the respective sample weights. 

Figure 1 shows the distribution of households along different ranges of net wealth. It reveals 

that only a small fraction of Austrians are net debtors, that the relative majority of Austrians 

(roughly 40%) have acquired a modest net wealth between 0 and 50,000 Euros and that a 

little more than the highest decile has acquired a net wealth exceeding 500,000 Euros. 

<PLACE FIGURE 1 HERE> 

While Figure 1 gives a first impression of the Austrian distribution of wealth, it remains 

relatively silent on the (relative) amount of net wealth concentrated at the top of the 

distribution. In this context an examination of the cumulative distribution function is more 

revealing: The distribution function depicted in Figure 2 is a partial replication of work done 

by the Austrian National Bank (the threshold values can also be found in Albacete et al., 

2012, 66). As expected the distribution function indicates that the Austrian distribution of 

wealth takes the typical exponential form. However, we also observe that the richest 
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households found in our sample possess a net wealth of only 15 million Euros, strongly 

pointing to a lack of data with regard to very rich households. This observation, of course, 

reinforces the validity of the critique that the non-observation of very rich households might 

lead to a significant bias in aggregate estimates.3 Additionally, Figure 2 gives a first intuition 

how the right tail of the distribution is different compared to the rest of the distribution. 

<PLACE FIGURE 2 HERE> 

A closer look at the top of the distribution is even more informative with regard to the 

question at hand: Table 1 shows aggregate as well as average wealth for the richest 5 

percentiles as well as an estimate for total wealth and the respective shares. Here, we 

observe that the richest percentile owns roughly 23% of total net wealth, whereas the 

cumulated wealth of the richest five percent amounts to 47.6% of total wealth. A full 

percentile list can be obtained from the authors. 

<PLACE TABLE 1 HERE> 

The corresponding Gini-coefficient of the distribution of wealth in Austria as obtained from 

the original data is equal to 0.762, which represents a rather unequal distribution of private 

wealth from a global perspective (Davies et al., 2007). In the next section we give a detailed 

description of our methodological strategy and the practical steps necessary to implement 

this strategy. 

 

3. Estimating the Missing Rich: A Methodological Suggestion  

As already mentioned in the previous section, the study design of the HFCS anticipates 

various well-known problems of survey data on household wealth. However, the problem of 

non-observation remains crucial: While the richest households in Austria possess much more 

than a billion Euros, the richest household in the HFCS sample lies somewhere between 

11.8 million Euros and 22 million Euros within the five implicates. This section provides a 

statistical approach to compensate for this gap and thereby to improve data reliability on the 

top end of the distribution. 

The approach is based on three distinct steps: first, we fit a Pareto distribution to the upper 

tail of the sample. Second, we apply a bootstrap procedure in order to test the validity of the 

distribution estimated in the first step. These two steps closely follow the method suggested 

in Clauset et al. (2009). In an additional third step, we eliminate any observation with 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 According to Austrian counterpart of the (international) Forbes-list there are roughly thirty billionaires 
in Austria with an estimated total wealth of roughly 100 billion Euros (cf. http://www.trendtop500.at/die-
reichsten-oesterreicher/).	
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reported net wealth exceeding 4 million Euros and replace them with data points suggested 

by the previously estimated Pareto distribution. Figure 3 provides a graphical illustration of 

these three steps. The elimination mainly affects observations from the 100th percentile and 

accounts for the fact that the sample does not contain observations on net wealth exceeding 

20 million Euros but claims to be representative for the whole population. In contrast the 

corrected sample emerging from this three step procedure is more likely to represent the 

population since the unrealistic truncation of the sample at 20 million Euros net wealth is 

removed. The assumption that the data follow a Pareto distribution in the first step is not a 

restrictive one, since we are only interested in the upper tail. Commonly used alternative 

distributions such as Dagum or Singh-Maddala are designed to describe the entire interval of 

positive household wealth and the upper tail of those distributions converges towards a 

Pareto distribution. Dagum (2006) even considers this latter property as an essential 

characteristic for any distribution used to describe the behavior of household wealth. 

<PLACE FIGURE 3 HERE> 

3.1 Estimating the Distribution Parameters 

Generally, a Pareto distribution has to be established for each implicate. The associated 

cumulative distribution function is denoted in the following way.  

𝑃! 𝑥! = Pr(𝑋! ≤ 𝑥!) = 1− !!
!!

!!
∀  𝑖𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠  𝑖 = 1… 5   ∧   𝑥! ≥ 𝑚!,  (1) 

In this context 𝑥! represents observed net wealth of a given household, 𝑚! the hitherto 

unknown cut-off point above which the sample data can be described using a Pareto 

distribution and, finally, 𝛼! is a shape parameter describing the specific form of the underlying 

power distribution (Pareto alpha). Our approach closely follows Clauset et al. (2009) and can 

be summarized in the following way: 𝑚! and 𝛼! are determined by estimating Pareto 

distributions systematically for increasing subsets of the data and choosing that subset and 

its corresponding parameters which exhibits the best fit to the data. We employ Cramer-Von-

Mises (CvM) test-statistics to compare the relative fit of the estimated distributions.4 The 

Mathematica code used to carry out the steps described below can be obtained from the 

authors upon request. 

First, we fit Pareto distributions by maximum likelihood to increasingly large sub-samples 

starting from the 100th percentile. Through expanding the sub-sample by one additional 

percentile until we reach the 71st percentile, we get 30 different estimates for each 𝛼! and 𝑚!, 

where 𝑚! is equal to the smallest observation within each subsample. The smallest subset 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 A rationale for using the test statistics instead of standard p-values available in software packages is 
provided in section 3.2.	
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includes only the data points within the 100th percentile and the largest contains all 

observations between the 100th and 71st percentile. Maximum likelihood (ML) is our preferred 

estimation method since it is a well-established result that ML estimators are superior to 

other approaches if the data of interest follows a power law (Clauset et al., 2009, Greene, 

2012). The ML estimator in our case is equivalent to the so-called Hill estimator5. 

Next we perform a goodness of fit test for each of the 30 subsamples per implicate by 

computing the CvM statistic (𝑡𝑠!), which increases with the difference between the observed 

sample and the estimated Pareto distribution. Thus, low t-statistics point to relatively good 

fits. Figure 4 plots these statistics for the upper 30 percentile-subsamples6 and the 

corresponding 𝛼 across all five implicates. As is evident form Figure 4, the test-statistics vary 

considerably between implicates and even more do the 𝛼’s, especially for the first few sub-

samples. The huge variation in the top of the distribution is very likely the effect of small 

sample sizes, since each percentile only contains roughly 24 observations. 

Both, the estimations of 𝛼! as well as the computations of 𝑡𝑠! were performed only using the 

HFCS data without the corresponding weights. This operation is the only one where we 

ignore weights and we believe there are good reasons for doing so: First, estimation results 

hardly change when weights are taken into account. The difference in the average 𝛼 across 

implicates is equal to -0.00317, demonstrating not only a minor relative effect, but also 

leading to slightly more conservative estimates (i.e. wealth is distributed more evenly). 

Second, the construction of sampling weights by the Austrian central bank involves a battery 

of unknown regression models and assumptions about the determinants of response 

probabilities. By only using weights for linking the sample to the underlying population, which 

is required for the definition of wealth percentiles for example, we strongly limit the influence 

of those unknown implicit assumptions. Third, if using weighted data to carry out the CvM 

tests, one needs to handle the variation involved in the construction of weights by using re-

sampling weights. While the question how to combine the CvM test with those re-sampling 

weights is far from trivial, such a procedure would also greatly increase complexity and 

computation time involved since total operations (estimation of 𝛼! and computation of 𝑡𝑠! for 

each subsample) would increase from 300 to more than 150,000 if the full set of re-sampling 

weights provided by the Austrian central bank, is used. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 Dropping implicate indexes and starting from the pdf 𝑝 𝑥 = 𝛼 !!

!!!!
 one obtains the log-likelihood 

function 𝐿 𝛼, 𝑥 = ln𝛼 + 𝛼 ln𝑚 − 𝛼 + 1 ln 𝑥!!
!  and maximization yields 𝛼 = !

!"
!!

!
. For derivations 

with slightly different notation see Hill (1975) or Appendix B in Clauset et al. (2009).	
  

6 The results do not change if one considers the upper 50 percentiles instead of the upper 30. Fitting 
Pareto distributions to subsamples including data below the 50th percentile is not supported 
theoretically nor does it yield satisfactory fits as the CvM statistics rapidly increase.	
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<PLACE FIGURE 4 HERE> 

Our focus was on determining 𝑚! such that on the one hand it is not sensitive to sample size 

problems (as seems to be the case in the highest percentiles), and on the other hand it does 

not rely on ad hoc assumptions alone (Bach and Beznoska, 2011, Bach et al., 2014) or a 

merely visual inspection of well-known log-log graphs (Cowell 2011). In this context Clauset 

et al. (2009) illustrate the effect of using unreliable cut-off values when estimating 𝛼. 

Choosing 𝑚! below 𝑚! leads to the inclusion of non-Pareto distributed data and thus to 

biased estimates. Conversely, choosing 𝑚! above 𝑚! ignores potentially useful information 

and, thus, lowers the statistical precision of the estimates. While the method provided by 

Clauset et al. (2009) proves a suitable guide in achieving these aims (see also Ceresetti et 

al., 2010, Chui and Fyles, 2010, Rubinov et al., 2011), the presence of five different and 

autonomous implicates leads to an additional difficulty, namely how to synchronously identify 

a good fit across all five implicates. In the application of Wald’s well known maximin model 

(Wald, 1945) we found a satisfying answer to the latter concern: The maximin model posits 

that in the face of different alternatives with uncertain consequences, one should rank those 

alternatives on the basis of their worst-case consequences (worst fit in our case) and choose 

that option were the worst-case is at least as good as all other alternatives. Thus, it 

introduces a certain degree of conservatism to the chosen estimation results by focusing on 

the relatively worst fits and nullifying the impact of single exceptionally well-fitting 

subsamples across all implicates. In detail, we first chose the maximal test-statistics (i.e. the 

worst fit) across implicates for each subsample and then identify the minimum of these test 

statistics (i.e. the best fit) across all samples. By applying this procedure we find that the 

threshold value of the 78th percentile proves to be the most suitable candidate for providing a 

statistically reliable estimate for 𝑚!. Additionally the interval around the result is characterized 

by small test statistics as well as stable alpha parameters across implicates, which increases 

our confidence in the results presented in Table 2: 

<PLACE TABLE 2 HERE> 

So far we have established what we deem to be a non-arbitrary technique of fitting a Pareto 

distribution to the upper tail of the Austrian HFCS sample. However, even if this upper tail 

does not follow a Pareto distribution, the according parameters could still be estimated 

without noticing the mistake. Therefore we rigorously test the hypothesis that our data is 

actually drawn from a Pareto distribution prior to using these estimates for correcting the 

HFCS sample. 
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3.2 Testing the Pareto-Hypothesis  

In the previous subsection we elaborated on how to find reliable distribution parameters. In 

turn, the obvious follow up question is whether the hypothesis that the estimated distributions 

truly represent the data is indeed correct. On first sight this might seem superfluous, since 

the p-values based on the Cramer von Mises tests already applied would provide an 

immediate answer to the question whether the data within a given subsample is statistically 

different from the estimated distribution or not. However, those standard p-values are derived 

under the assumption that the distribution against which the data is tested is perfectly known, 

which is typically not the case for survey data due to the variations inherent in the random 

sampling processes of any survey data collection. As a result, standard p-values are not 

suitable for clarifying this issue. This is why we again follow Clauset et al. (2009), who 

suggest comparing the goodness of fit of the original data and its estimated distribution with 

the goodness of fit of newly created data vectors based on the original data as well as the 

estimated distribution. While these new data vectors are created by means of a bootstrap – 

that is repeated random drawing from the estimated distribution (above 𝑚!) and the original 

data (below 𝑚!) – the general idea is to test the goodness of fit of the original estimation 

against the goodness of fit of an estimation based on these newly generated data vectors, 

where the data for top-wealth households (i.e. all households above 𝑚!) is already known to 

truly follow a Pareto distribution. Thus, this procedure serves as a means for coping with the 

uncertainty arising from random sampling testing our hypothesis. 

Following this strategy, we create 𝐵 = 10.000 synthetic datasets (𝑋!") for each implicate by 

drawing a number 𝑥!" with probability 𝑡! 𝑛 from the previously estimated distribution with the 

parameters 𝛼! and 𝑚!, where 𝑛 = 2380 is the number of total observations and 𝑡! is the 

number of observations above 𝑚!. With probability 1 − 𝑡! 𝑛 we pick a random element 𝑥!" 

from the original dataset below 𝑚!. Repeating this process from 𝑗 = 1… . 𝑛 yields a synthetic 

dataset with 2,380 observations where all elements above 𝑚! are drawn from the originally 

estimated distribution. For each implicate we use these 10,000 data sets to compute an 

artificial p-value (𝑝!) for the hypothesis test that the data follows a Pareto distribution with 𝛼! 

and 𝑚! more closely than the synthetic datasets follow their estimated distributions. Since we 

already know that the synthetic datasets truly follow a Pareto distribution above 𝑚! and any 

differences are the result of random variations, this implies the Null-hypothesis that the data 

truly follows a Pareto distribution. In order to obtain this p-value with respect to this 

hypothesis, we repeat all the steps from section 3.1. So for each of these synthetic datasets 

a Pareto distribution with cutoff-point 𝑚!" and shape parameter 𝛼!" is estimated as described 

above and the corresponding CvM test statistic 𝑡𝑠!" is computed. This test-statistic is in turn 

compared to the original test-statistic 𝑡𝑠! according to the condition that 
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𝑡𝑠!" ≥    𝑡𝑠!  (2) 

 

In any instance where the above condition (2) holds the original data is actually more similar 

to its estimated distribution than the new data vector. Obtaining 𝑝 for our hypothesis now 

implies to count all instances where condition (2) holds (denoted by 𝑐!) and divide this sum 

by the total number of synthetic datasets 𝐵 and average over all implicates, i.e.  

𝑝 = !
!

𝑐!
𝐵  

!
!!!     (3) 

The interpretation of this artificial p-value is pretty standard, namely that below the 10% level 

the Null-hypothesis is rejected. The main rationale behind this is, that synthetic test statistics 

larger than the original test statistic indicate that the difference between the original data and 

its estimated distribution is due to random variation, since the synthetic data truly follow a 

Pareto distribution above 𝑚!". If enough synthetic test statistics are larger than 𝑡𝑠!, one 

cannot reject the Pareto hypothesis any more. We simply follow the common practice and 

use 10% as our threshold below which we reject the hypothesis that the data follows a 

Pareto distribution. However, the results for single implicates are partially idiosyncratic and 

far from consistent across all implicates. 

<INSERT TABLE 3 HERE> 

One can see from Table 3 that the Pareto distribution is a plausible model for implicates 2, 4 

and 5 and that it is strongly rejected for implicate 1 and weakly for implicate 3. On the 

average however the hypothesis still holds. We focus on this latter result since the variability 

expressed by the single implicates is due to imputing missing data based on a series of 

different statistical models. Thus, only an average across those implicates seems to be a 

justifiable criterion, since the different implicates have to be interpreted conjointly to 

appropriately consider the variability between implicates.   

3.3 Correcting the Data 

After identifying 𝛼! and 𝑚! we use this information to correct the missing observations of rich 

people in the upper tail of the HFCS sample. In doing so, we first remove all observations 

exceeding 4 million Euros in net wealth from the original data set. We choose that threshold 

because the frequency of observations starts to markedly decline around this level of net 

wealth. Thereby patterns however slightly differ across implicates (see Figure 5). All these 

observations are part of the 100th percentile (except for the second implicate, where the 100th 

percentile starts at 4.6 million Euros) and represent between 11,374 and 44,081 households 

depicted by 8 to 30 observations depending on the specific implicate one considers. This 

treatment implies that we assume that the alleged non-observation bias affects this group of 
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households and instead suggest to rely on the estimated Pareto distribution for observations 

above 4 million Euros in net wealth.  

<INSERT FIGURE 5 HERE> 

 

To determine how many households should be added to the sample based on the estimated 

Pareto distribution we look at the number of households (𝐻𝐻!) with net wealth holdings 

above 𝑚! and below 𝜇   ≡ 4  𝑚𝑖𝑙𝑙𝑖𝑜𝑛  𝐸𝑢𝑟𝑜 according to the HFCS data set. 𝐻𝐻! varies 

between 785,924 for 𝑖 = 2 and 817,418 for 𝑖 = 1. By using the properties of the underlying 

probability distribution function we compute the number of households above 4 million Euros 

(𝐻!) by:  

𝐻! = 𝐻𝐻!
!!!! !
!! !

   (4) 

𝐻! varies between 22,982 for 𝑖 = 5  and 40,251 for 𝑖 = 2. This approach ensures that the 

correction for rich households only depends on high quality observations from the HFCS 

data. Given 𝐻!, one can derive the wealth 𝑥! for each household above 𝜇 by exploiting the 

fact that  

1 − 𝑃! 𝑥! =   Pr 𝑋! > 𝑥! = !!
!!

!!
≡

!!!
!!!!!!

.  

Rearranging terms gives  

     𝑥! = 𝑚!
!!!!!!
!!!

! !!
, (5) 

where 𝐻!! is the number of households reporting a net wealth of at least 𝑥! or, put differently, 

the rank of a given household. As a result one obtains new observations for net wealth above 

𝜇 for each implicate. It is important to note, however, that we limited net assets by 1 billion 

Euros. Specifically any observation above that value was set equal to 1 billion Euros. The 

motivation for this truncation of the newly generated sample is our preference for 

conservative estimates. In the next section we investigate the implications of this data 

correction and the change of major descriptive statistics. 

Before that it is important to adapt the sample weights since the number of households 

added and the number of households removed from the sample differ. The net-change, 

which is the difference between the number of households above 4 million Euros according 

to the original HFCS sample and 𝐻𝐻! varies between +16,280 (𝑖 = 1) and – 3,828 (𝑖 = 2). In 

the latter case, the original HFCS data set reported a higher number of households above 𝜇 

compared to the estimated Pareto distribution. Thus in this case the weights of the remaining 

observations below the cut-off point need not to be reduced but increased. In either situation 

the alteration of sampling weights is done proportionally to the total number of households 
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less the observations above 𝑚!. For example the net change in the first implicate (+16,281) 

in relation to the number of households below 𝑚! equals 0.55%. As a result the weights for 

observations below the cut-off are reduced by 0.55%. On average (across the implicates) the 

weights are reduced by 0.21%. The next section contrasts the results of the data correction 

to the original sample.  

4. The Impact of the Missing Rich: Distributional Statistics 

This section summarizes the distributional statistics of the corrected data and compares the 

presented results to those obtained from the original HFCS-data. Let us first take a look at 

the impact on the overall structure of the sample: Figure 6 shows, analogously to Figure 1, 

how the population is distributed among different segments of wealth, where the relative 

changes between original and corrected data have been highlighted. In this representation 

we only observe minor changes: The share of the population possessing net wealth greater 

than 500,000 Euros slightly increases due to the increase in very rich households. 

Correspondingly the remaining shares decrease. 

<INSERT FIGURE 6 HERE> 

While it is immediately obvious from Figure 6 that the number of households with net wealth 

above 500,000 Euros slightly changes, it remains unclear how the estimated wealth 

changed. In this context Table 4 – basically a replication of Table 1 – is more revealing: it 

indicates that the total wealth of the richest percentile grows by more than 100%, namely 

from 237 billion Euros to 497 billion. From this it follows that total wealth also increases 

significantly from roughly 1000 billion Euros to about 1270 billion Euros. Thus, this analysis 

indicates an increase of 27% in the estimate for total wealth due to the correction for the 

alleged non-observation bias, which is concentrated in the top wealth classes. In this context 

the increase in the share of percentiles 96-99 is due to the correction of the number of 

households richer than 4 million Euros, which in turn implies that all households drop in 

ranks. A full list of all percentiles based on the corrected data can be obtained from the 

authors. 

<INSERT TABLE 4 HERE> 

Correspondingly, the share of wealth held by selected population groups changes 

significantly, with the most remarkable change in the share of the richest percentile, which 

increases from 22.9% to 38.2%. The share of the poorest 50% of the wealth distribution, on 

the other hand, decreases from 2.8% to 2.2%. 

These changes in estimates for total wealth and its distribution are mirrored by the change of 

central indicators like the Gini-coefficient, which rises from 0.762 to 0.811 if its calculation is 
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based on the corrected data. To further illustrate the changes in the estimated wealth 

distribution, Figure 7 compares a Lorenz curve for the original data to a Lorenz curve for the 

corrected data. As can already be inferred from Table 2, we observe a significant shift in the 

Lorenz curve due to the correction of the data as exemplified in the foregoing section. 

<INSERT FIGURE 7 HERE> 

In sum our estimations suggest that the size of wealth omitted due to the non-observation 

bias inherent in survey designs related to private wealth holdings is indeed significant. The 

estimate for total wealth changed by roughly a quarter although the correction of the data 

affected less than 1% of the underlying population. Consequently, one has to conclude that 

the implications of the non-observation bias are far from trivial and can hardly be ignored 

when dealing with top-wealth data. 

However, one possible objection to this conclusion is to question the robustness of the 

estimated distribution used for the correction of the initial data, since the reliability of the 

results presented here strongly depend on the validity of our distributional assumptions. In 

what follows we offer a series of such robustness checks, thereby scrutinizing the adequacy 

and plausibility of our methodological setup as well as the resulting estimations. 

5. Robustness Checks 

Given the sharp increase in net wealth holdings in the 100th percentile due to the data 

correction we suggest in section 3, the reader may be interested in the uncertainty of our 

estimates or be sceptical about our results anyway since they depend entirely on the 

statistical Pareto model. In this section we try to validate the robustness of our results in two 

ways: first we compare some specific implications of our estimated Pareto distribution with 

real data where it is available. Second, we provide upper and lower bounds of estimated net 

wealth with respect to data variability across subsamples by means of a bootstrap. In 

pursuing the first route we use the number of billionaires as provided by the Austrian 

equivalent of the (international) Forbes-list on top wealth households as an independent data 

source accessing the plausibility of our estimation with regard to the tail of the distribution. 

Additionally, we try to estimate the total wealth of all households between 𝑚! and 𝜇 and 

compare the results to the estimates provided by the original HFCS-data. 

5.1 Validating the Number of Billionaires 

When correcting the original HFCS-data for the non-observation bias we assumed maximal 

wealth to be equal to one billion dollar. Practically, this implied that net wealth of all 

households, exceeding 1 billion Euros according to the estimated Pareto distributions where 

set to one billion. Although this restriction might lead to a significant underestimation of total 

wealth (assets of Austrian billionaires amount to roughly 70 billion Euros according to 



15 

Austria’s counterpart to the Forbes-list), we nonetheless imposed it for reasons of statistical 

conservatism. However, even though we do not want our estimates to rely on the upper end 

of the distribution’s tail, we can still use it in validating our results. In doing so we compared 

the estimated number of households with net wealth greater than one billion as implied by 

our estimated distributions with the available media information. The latter varies 

considerably between years (and it is unclear whether these variations are due to actual 

changes in wealth or just to changes in journalists’ informational status), from 19 in 2011 (the 

year of the HFCS survey) to 30 in 2013. Our own calculations point to 31 billionaires and 

thus are very well in line with the figures reported by journalists.  

5.2 Validating the Amount of Wealth Between mi and µ  

In addition to the robustness check performed in the previous subsection we applied the 

same logic to the less risky question of how well our estimated results match the original data 

in those segments of the distribution which were not affected by our correction procedure. 

Specifically, we compared the estimate for the total wealth of all households between 𝑚! and 

𝜇 as implied by the Pareto distribution with the estimates obtained from the original HFCS-

data. Here our results point in a similar direction as in Section 5.1: We only find a minor 

difference of -33.4 billion Euros between the estimate obtained from the HFCS-data and that 

implied by the corrected data (565.8 billion Euros). The suggested estimation strategy, thus, 

seems to be a relatively robust one. 

5.3 Assessing the Sampling Variation 

Due to the complex survey design of the HFCS, which involves stratified cluster sampling as 

well as multiple imputation to correct item-non-response, one is confronted with serious 

complications when trying to compute confidence intervals reflecting the uncertainty of the 

estimation process. While current literature offers procedures to compute confidence 

intervals with either multiply imputed data (Rubin, 1987) or data from complex surveys (Rao 

and Wu, 1998, Rao et al., 1992, Kolenikov, 2010), there is, according to our knowledge, no 

contribution which shows how to construct appropriate confidence intervals when multiple 

imputation as well as a complex survey design are used in the data collection process. 

Therefore, we implemented an approach to validate the robustness of our estimates with 

regard to sampling variation and suggest focusing only on the uncertainty arising from the 

variability of the original data. In doing so, we apply a bootstrap in order to test the 

robustness of our results with respect to random resampling. Even though we cannot 

express the uncertainty of the estimation process itself this way, we are still able to 

demonstrate the robustness of our results due to potential outliers and irregularities within 

certain subsets of the original HFCS sample. Therefore, it is important to bear in mind that 
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the bounds reported below do not serve as direct substitutes for traditional confidence 

intervals.  

The bootstrap procedure for computing an upper and lower bound of 𝛼! involves the 

construction of 𝑈   =   1000 random samples consisting of 𝑛! = 2
3 ∗ 𝑛 ≈ 1587 observations 

randomly picked from the original HFCS data set for each implicate. Then we re-estimate 𝛼! 

for each random sample. After ordering them in ascending order, the 26th estimate of 𝛼! is 

identified as the lower and the 975th as the upper bound of 𝛼!. By repeating the data 

correction procedure described in section 3.3 for the upper and lower bound 𝛼! ’s, we obtain 

new estimates for the distribution of net wealth. The results are reported in Table 5 (already 

averaged across the implicates). As one can see, the upper bound of net wealth within the 

100th percentile deviates approximately by 140 billion Euros from the point estimate while the 

lower bound deviates by 111 billion, indicating that the 237 billion Euros reported in the 

original HFCS data are very likely to be downward biased. 

<INSERT TABLE 5 HERE> 

6. Conclusion 

In this paper we tried to correct for the underrepresentation of the wealthiest households in 

the Austrian HFCS data by fitting a Pareto distribution to the upper fifth of the wealth 

distribution. For the exact determination of the lower bound of the distribution we used the 

Cramer-von-Mises test instead of graphical evidence or ad hoc assumptions. Finally, all 

households within the sample with reported net wealth above 4 million Euros were eliminated 

from the dataset and replaced with the households from the estimated distribution. 

It can be seen that this adjustment exhibits a significant influence on the results. The 

estimated aggregate wealth increase from about 1000 billion Euros to 1277 billion, where the 

increase is mainly due to the increase of wealth within the highest percentile (wealth within 

this percentile increases by 110%). Amongst other things it follows that the richest 10% of 

Austrian households possess 69.3% of total net wealth instead of the 61% that follow from 

the original HFCS data. The change in the share of the richest percentile is even more 

remarkable: it increases from 22.9% (HFCS) to 38.2%. 

Finally we compare our results to a list of Austrian billionaires published by a national news 

magazine and additionally assess the fit of the estimated distribution to the original data for 

those parts of the distribution which are not corrected. These exercises reveal that our non-

arbitrary approach of fitting a Pareto distribution is very well in line with non-sample evidence 

and also closely fits the data. Furthermore the computation of upper and lower bound wealth 

estimates indicates that the underrepresentation of wealthy individuals that we detect 
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especially within the 100th percentile cannot be explained by potential irregularities and 

outliers in the sample and thus seems to be a robust finding. 
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Tables 

 

Table 1: Austrian’s richest 5% according to the HFCS-data 

Percentile 
Total net 
wealth (in 

billion Euros) 

Average net 
wealth per 

household (in 
million Euros) 

Share of 
total net 
wealth1 

Culminated share of 
total net wealth 

96  38.8  1.0 3.9% 

47.6% 

97  48.7  1.3  4.9% 

98  65.5  1.7  6.6% 

99  94.1   2.5  9.3% 

100  237.0   6.4 22.9% 

Total 
Sample  1,000   0.265 100% 100% 

1 Note that total wealth and the relative shares of wealth are not fully consistent, since each final 
estimate requires the application of Rubin’s Rule (i.e. each estimate is based on averaging five single 
estimates obtained from the five different implicates, see: Rubin, 1987). 

 

Table 2: Estimating the Pareto distribution for the Austrian wealth distribution: Results 

Implicate 𝜶 𝒎𝒊 

#1 1.28808 281,242 Euros 

#2 1.14815 287,809 Euros 

#3 1.3332 289,811 Euros 

#4 1.24881 293,161 Euros 

#5 1.36649 288,422 Euros 

Average 1.276946 288,089 Euros 

 

Table 3: p-values across all implicates 

Implicate #1 #2 #3 #4 #5 Mean 

p-value 0.019 0.2776 0.0983 0.5421 0.1781 0.223 
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Table 4: Austrian’s richest 5% according to the corrected data.  
Values using original HFCS data in parenthesis. 

 

Percentile 
Total net 
wealth (in 

billion Euros) 

Average net 
wealth per 

household (in 
million Euros) 

Share of 
total net 
wealth 

Culminated share of 
total net wealth 

96 40.8  
(38.8) 

1.1 
(1.0) 

3.2% 
(3.9%) 

58.8% 
(47.6%) 

97 50.3 
(48.7) 

 1.3 
(1.3) 

4.0% 
(4.9%) 

98 66.7 
(65.5) 

 1.8 
(1.7) 

5.2% 
(6.6%) 

99 101.2 
(94.1) 

 2.7 
(2.5) 

7.9% 
(9.3%) 

100 497.3 
(237) 

 13.4 
(6.4) 

38.2% 
(22.9%) 

Total 
Sample 

1,277.7 
(1,000) 

0.339 
(0.265)  100% 100% 

 
 

Table 5: Upper and lower estimation bounds. 

Lower Bound Point Estimate Upper Bound 

Pareto’s Alpha 

α = 1.35 α = 1.28 α = 1.21 

wealth attributed to the richest percentile 

386 billion Euros 497 billion Euros 635 billion Euros 
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Figures 

 

Figure 1: Distribution of households along different segments of ne wealth (see also Albacete et al. 
2012, 41). 

 

 

Figure 2: The cumulative distribution function of net wealth in Austria. 
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Figure 3: A sketch of the methodological strategy. 

 

 

 

Figure 4: Estimates for Pareto’s 𝛼 and corresponding Cramer von Mises test statistics across all 
implicates. 
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Figure 5: Plots of the richest 50 households in each implicate and the 4 million Euros cut-off. 
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Figure 6: Distribution of households along different segments of net wealth based on the corrected 
data. 
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Figure 7: Lorenz curves for the original data (shaded area) as well as the corrected data. 

 

 


