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Abstract

Basu (2006) argues that the prevalence of 99 cent prices in shops can

be explained with rational consumers who disregard the rightmost digits

of the price. This bounded rational behaviour leads to a Bertrand equi-

librium with positive markups. We use data from an Austrian price com-

parison site and �nd results highly compatible with Basu's theory. We

can show that price points - in particular prices ending in 9 - are preva-

lent and have signi�cant impact on consumer demand. Moreover, these

price points are sticky; neither the price-setter itself wants to change

them neither the rivals do underbid these prices, if they represent the

cheapest price on the market.
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tenbergerstr. 69 4040 Linz, Ph.: +43 70 2468 8333, Email: franz.hackl@jku.at. This research
was supported by grant 12444 of the Austrian National Bank's Jubilee Fund. Thanks to
Christine Zulehner and seminar participants at Bocconi, Milano, Essen (RWI), Hannover
and Linz for helpful comments and to geizhals.at for giving us access to the data and pro-
viding useful advice.
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1 Introduction

This paper analyzes the role of price points in consumers' purchasing decisions

and sellers' price setting behavior of e-commerce markets. Price Points are

de�ned as values with special price endings that are frequently used, i.e. the

prevalence of 0-ending (also referred to as "even prices") and 9-ending prices

("just-below prices" or "odd prices"). While previous explanations for this

phenomenon rely on costumer's perceptions of these price points - i.e. 9-ending

prices convey a particular image of a product (image e�ect) - Basu (2006)

explains such price-setting as a rational strategy of oligopolists in a retail

market: If - due to information-processing di�culties - consumers disregard

the right-most digits of the price; it might be rational for �rms to set prices

with a 99-ending in equilibrium. By doing so, �rms can increase their prices

somewhat and escape the zero pro�t forecast of the Bertrand equilibrium in a

retail market (level e�ect).

Whereas previous research analyzes these price points in o�ine-markets (scan-

ner data from supermarkets, real estate markets) we focus on online-markets.

The lack of studies in emerging e-commerce markets is surprising given that

the digital revolution might change our understanding of the �rm pricing pro-

cess. One might argue that the lack of comprehensive studies in online markets

can be explained with less pronounced problems of price comparison: less cog-

nitive di�culties to memorize and compare products of di�erent retailers. In

particular, at a price comparison site all price o�ers for a speci�c product can

be seen at one mouse-click. On the other hand, we still observe price obfusca-

tion (Brynjolfsson and Smith, 2000) - e. g. by variation in shipping cost - and

service di�erentiation between e-tailers so that the idea of strictly ascending

price listings looses importance. We will show that - although less than in

brick-and-mortar stores - we do see a considerable proportion of odd as well

as even prices in online shopping.

Most of the studies in o�ine markets analyze very speci�c issues of price points

either on the demand side in form of �eld or laboratory experiments or on the

supply side in form of price rigidity analysis. The focus and innovation of

our paper lies in the consistent and comprehensive analysis of both sides of

the online market: on the one hand the analysis of pricing strategies with

price points has to consider price-setting decisions of �rms; on the other hand,
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demand regularities on the part of the buyers have to be identi�ed within a

consistent data set. Only if both sides of the market show consistent reactions

correct conclusions on price points can be drawn: If odd (or even) prices turn

out as equilibrium outcomes, they should prevail longer as comparable non-

focal prices. Beyond that, price points should behave consistently in market

equilibrium situations: as we are the �rst to observe the whole market, we can

look at price stickiness for prices set by random �rms, but also at prices for

price-leaders. Basu's (2006) model predicts: if a market equilibrium results in

focal prices ending in 99 cent, other �rms might be less willing to undercut

this price point.

We use comprehensive data from Austria's largest price comparison site to test

theories on price points. While most previous studies consider only buying

intentions, small samples and a limited number of products, our data has the

advantage that we can observe the entire market place with all competing

shops. We use price information on 24473 products posted by 714 sellers

together with information about referral clicks and last-click-throughs which

are typically used as demand indicators in e-tailing.

We show that 99-ending prices - in general focal prices - are prevalent in a

market environment where they should least be expected to be. Our results are

highly supportive of Basu's theory: consumers disregard cent in their shopping

behavior, prices are more stable if they end with 9. Moreover, best-prices

ending in 9 or 99 are not changed by the price-setting �rms and are less likely

to be underbid by the rivals of the shop.

2 Literature

2.1 Theories for price points

Researchers have focused mainly on two consumer-oriented explanations for

the phenomenon of focal prices1 (Stiving and Winer, 1997):

1There is a wealth of operational or ad-hoc explanations. The most famous example is
the anecdotal account (Stiving and Winer, 1997) of shop-owners, who posted prices which
would force the clerks to give back some small change in order to force their sta� to register
the transactions rather than pocket the money. Among other ad-hoc theories Monroe (1973)
mentions (and refutes) views that the number 9 might be considered a magical number with
special properties. Clustering has also been considered as a tool to maintain tacit collusion
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(i) The �rst approach has been called level e�ect, left digit e�ect or left to right

processing (Thomas and Morwitz (2007), Basu (2006) or Thomas and Morwitz

(2005)). The basic idea is the assumption that consumers use a heuristic to

calculate, compare and memorize prizes, due to their limited brain-capacity

to process prices exactly: they read prices from the left and, in particular,

they disregard cent prices. As a result of this boundedly rational behavior,

the consumers tend to overestimate the gap between prices di�ering only by a

small amount, if the lower price has a smaller left digit (e.g.: e3.00 vs. e2.99).

This theory has only recently been formalized in a Bertrand-Equilibrium model

(Basu, 2006). The paper assumes boundedly rational consumers, who do not

bother to take into account what's after the comma. Instead, they "guess"

that it is the average of all the last digits of products on the market. This

setting is used to analyze the market equilibria in a Bertrand-setting where

�rms can post prices but cannot a�ect quantities.

The model is relevant for two reasons: Firstly, the mechanism attacks the

Bertrand-paradox: Since consumers ignore the cent ending, undercutting a 9-

ending price by less than a full euro does not generate additional turnover; on

the other hand, it reduces the pro�t margin. As a consequence, �rms who want

to undercut will undercut by a full euro; undercutting with small amounts does

not make sense. Secondly, Basu's model generates an equilibrium in 99-prices,

that is perfectly rational on the part of the �rms and results in positive pro�ts

for the competing �rms.

Given this theoretical equilibrium we predict prices that end in 9 to be main-

tained longer than any other price-endings. Furthermore, even though theory

would not predict price-endings di�erent from 99 in equilibrium2 it predicts

similar demand for such items as long as they are priced with the same euro

digit.

A di�erent explanation for the level e�ect is mentioned already by Monroe

(1973). The hypothesis postulates that consumers, when they plan to pur-

chase an item, have already formed an expectation of the price they are going

to pay, a so-called target price.3 If such a target price is memorized with

as has been shown in Christie and Schultz (1994) and Christie et al. (1994).
2Basu (2006), establishes an equilibrium in 99 cent prices; a further result shows the

existence of two equilibria, one with 99 cent, the other with marginal cost.
3In a similar version of the story consumers might have binding budget set, because they

have only one or two cash bills with them and while a price just below this threshold lies
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an even number, it would typically be bene�cial to set prices below these

even-numbered thresholds. As this explanation is usually seen observationally

equivalent to the boundedly rational behavior we do not discriminate between

the two explanations any longer.

(ii) The other important consumer-based approach is called image e�ect (Stiv-

ing and Winer (1997), Thomas and Morwitz (2007) or Schindler (1991)): Price

setters may use the pattern of a price to transmit speci�c information about

the item that is being o�ered. An example could be a clothing company that

uses 00c endings in regular times and 99 endings for items on sale. If this was

true and a 9-ending communicated a good bargain, we would also expect price

clustering, higher demand and maybe some rigidity on 9-ending prices. Yet,

not all the prices are predicted to end in 9 and a similar pattern might emerge

for prices ending in 0 (or any other special number), if a zero were to transmit

positive properties such as product quality.4

It should be noted that the 'image e�ect' theories predict higher demand at

focal prices, whereas the 'level e�ect' predicts that consumers do not react to

di�erences in the cent digits with their demand behavior. Moreover, 'image

e�ects' might be prevalent not only in 99-ending prices, but also in even prices.

In terms of price stability Basu (2006) predicts that 99-ending prices are more

stable; in particular they should not be underbid by the rivals. There is no clear

prediction for the equilibrium on part of the 'image e�ect' theory, because shop

behavior is not explicitly modeled: image prices could be less stable, because

rivals might want to destroy the image of a cheap price by simply underbidding

it; on the other hand, they might be more stable if the additional demand at

the image price is so high, that changes are not worthwhile.

2.2 Empirical Evidence

Concerning demand e�ects of focal prices, there is a large experimental liter-

ature - starting already in 1936 by Ginzberg (1936) - but only a few studies

look at real markets and actual demand on a larger scale. In one larger study

on single products Stiving and Winer (1997) use scanner data on yoghurt and

tuna and �nd a large and generally positive relationship between a 9-ending

within their budget set, a price just above doesn't.
4See also Palmon et al. (2004) for a survey.
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price and sales. Moreover, they �nd, that consumers don't process prices holis-

tically. The �eld experiments by Schindler and Kibarian (1996) and Anderson

and Simester (2003) observe demand for items in a mail-order catalogue, where

prices were manipulated to show 9-endings. Generally, these experiments �nd

an overall positive e�ect on demand. Yet, the signi�cance of the e�ect depends

on a variety of other factors, such as how much information was available on

a product and whether the item has been introduced only recently. Labora-

tory experiments, in general, have to rely on purchase intentions instead of

actual demand. An example of such an experiment is Gendall et al. (1997),

suggesting that 9-ending prices a�ect purchase intentions positively.5

Studies looking at price rigidity are very rare.6 Levy et al. (2007) �nd evidence

that prices ending in nines are sticky in the sense that price setters are more

reluctant to change them. Once these price is changed, though, the ultimate

price jump is larger which might be due to a larger adjustment need. Sehity

et al. (2005) were using the introduction of the euro showing that retailers

all across Europe quickly converged to focal prices again, which had been

overturned on the �rst of January, 2002.

Only a few studies are able to di�erentiate between level-e�ects (left-digit ef-

fect) or image e�ects. The aforementioned study by Stiving and Winer (1997)

found, that consumers treat the pre-, and post-comma digits in a di�erent

manner. However, apart from this study, the evidence on the image-e�ect

stems from lab experiments and surveys. In an intention-to-purchase experi-

ment Liang and Kanetkar (2006) obtain similar results as Stiving and Winer

(1997). However, both studies report that even pricing plays a role as well,

which they tend to take as evidence for image e�ects. Using experimental ev-

idence from Italian consumers Guido and Peluso (2004) �nd evidence for even

target prices. Moreover, when analyzing how prices are memorized, they �nd

that consumers recall odd prices smaller than they really are, especially when

the leftmost digit is manipulated in the experiment.7 Thomas and Morwitz

5Liang and Kanetkar (2006) provide an extensive review of the existing literature on price
endings and discuss also the literature on numerical processing and memory-e�ects of odd
prices; Kau�man and Lee (2005) review issues of price rigidity in e-commerce in general.

6Macroeconomists look at price points or reference prices when they inquire the existence
or prevalence of nominal price rigidities; e.g. Eichenbaum et al. (2008), Levy et al. (2007)
or Konieczny and Rumler (2006). 9-ending prices can act as price points and might in such
a way contribute to price stickiness in general.

7See also Guéguen and Legoherel (2004).
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(2005) �nally conclude that the scale of level e�ects depends on which digit to

the left is a�ected, which is an indication that left-digit-e�ects play a role.

Speci�c evidence for image e�ects is provided by Naipaul and Parsa (2001),

who compare restaurant menus and �nd that menu-makers use even prices

to suggest higher quality and just-below prices to indicate bargains. This is

largely in line with the ideas in the work of Schindler (1991).

3 Data and prevalence of price points

For our empirical analysis we use the database of http://www.geizhals.at. This

web site is a price search engine collecting the price o�ers via standardized

protocols from retailers and presents them electronically via its web-platform.

Due to the broad Austrian market penetration of Geizhals.at, this price search

engine practically covers the whole Austrian online market including suppliers

from other countries (especially Germany) which are interested in the Austrian

e-commerce business.

We use an in�ow sample of all price spells starting in an arbitrary week in

20078. A price spell is de�ned as the o�er from a speci�c �rm j for a speci�c

good i at a speci�c price pij. Each spell has a starting and ending time so

that we can exactly measure the spell durations in seconds. Price spells end

because �rms change their price or stop o�ering the product. Additionally

we know for each and every price spell the respective referral requests from

customers. Referral requests are customer clicks on the �rm's product o�er

at the Geizhals.at web page resulting in a forward from the web site of the

price search engine to the online shop of an e-tailer. We normalize the referral

requests to clicks per day to cope with the di�erent o�er durations. As very

cheap products are not expected to be bought online due to relatively high

shipping cost we keep only those product o�ers with an average price larger

than e25. Purchases below that threshold are atypical in e-commerce and

unlikely to occur outside bundles. In total we have 818,483 price spells for 714

e-tailers and 24473 products. On average we measure 25.5 referral requests

per day and product. A more detailed description of our dataset can be found

in Table 1.
8Monday, June 4, 2007, 03:00:00 to Monday, June 11, 2007, 03:00:00.
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Due to the multi-faceted structure of the data we have control variables at

three di�erent levels (descriptives on the variables of interest can be found in

Table 1: (i) E-tailer speci�c variables - being constant for the product o�ers

of a speci�c web-shop j - are the (a) country of origin, (b) a dummy variable,

indicating whether the �rm disposes of a pick up facility for customers who

want to avoid the cost and time it takes to ship an item. (c) Finally, we

observe all quality reviews of previous customers. They consist of a free text

section and a standardized grading scheme (�ve grade scale: 1 . . . best, 5 . . .

worst). We use this information to construct the average grade as a variable

that captures perceived service quality of shops. (d) Moreover, we can control

for the number of customers' evaluations.

(ii) Furthermore, we have information on three product speci�c controls: (a)

The number of competing shops measures how many shops were active in the

market i and is thus a measure of competition. (b) activity in the market:

We generated this variable by counting the number of price changes that were

observed during the week of observation to control for the general turbulence

in the market i. (c) a quality indicator for the product. Customers have the

possibility to recommend the product on the Geizhals.at website for purchase

or not. Out of these valuations we know the percentage of positive recommen-

dations for the product.

(iii) Apart from price, referral clicks and the timestamps (begin and end)

of a price spell, we observe the following o�er-speci�c (ij) information: (a)

shipping cost and (b) time until the product is can be shipped. If some control

variables (mostly availability, shipping-cost and pick-up facility and product

reviews) were not available, we imputed those variables at the mean and used

imputed variables together with a missing �ag for imputations.

Even though referral clicks are available in the data, the actual act of purchas-

ing a product is unknown, because actual purchases happen at the e-tailer's

own web site. This is unobservable for Geizhals.at and thus for us. Therefore,

following Smith and Brynjolfsson (2001) and Bai (2004), we use the concept of

last-click-through (LCT) as a proxy for the purchasing decision. If a customer

is searching for a product, she might meander around di�erent web sites, com-

paring characteristics of the shops, but she will �nally settle for the preferred

shop and buy there online. The last click to a shop selling the product is

usually identi�ed as the click with the highest purchase probability. We con-
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struct the LCT from the referral clicks using a procedure which is based on

hierarchical clustering and Grubbs' test for outlier detection.9

Figure 1 shows the frequency distribution of price-endings to check for the

prevalence of price points. The four graphs depict the distribution of price

endings in di�erent samples of interest: (a) all prices, (b) o�ers that were

clicked at least once, (c) price-leading o�ers and (d) best-selling o�ers (de�ned

as most frequently clicked o�ers with a market share greater than 10%)10.

Note that in any of the four samples odd and even prices are more frequent

and that even prices are even more so. Given that we observe 100 di�erent

cent-endings, a uniform distribution would imply a frequency of 1 percent of

the observations for each digit. Clearly the 00c, 99c, 90c, and 50c-ending are

more frequent than other price endings. This pattern is even more pronounced,

when we restrict our attention to price-leading or best-selling o�ers. Almost

4% of the price-leading o�ers (fourfold the expected frequency) were quoted in

99c and another 4% were quoted in 90c. Taken together, the four focal price

endings make up more than 40% of the bestselling price-endings.

Prices ending at even euro might be more relevant for expensive products. A

closer look at the 00 cent digits reveals that these prices are not necessarily

typical 'even prices'. Figure 2 shows the distribution of the unit position

for prices ending with 00 cent. The four graphs show the same four groups

of interest we used above. It turns out that in all groups a cumulation of

prices ending in 9 can be observed - and as before, the pattern is even more

pronounced for the clicked and best-selling o�ers. E.g. in the sample of best-

price o�ers 40 percent of o�ers end with nine euro, zero cent.

4 Price points and consumer behavior

Our demand estimation in Table 2 looks at consumers' clicks (qij) on the

`Geizhals'-website. A consumer click is a referral request to retailer j for

product i.

9In practice, the construction of the last-click-through (LCT) is a lengthy procedure
because a time span for observation as well a product span has to be chosen. See Dulleck
et al. (2008) for details. Here, we de�ne LCTs on the product level where a time interval of
one week initiates a new search period. Additional results when using other de�nitions of
LCT are available upon request.

10Market share was de�ned as the number of referral requests for o�er ij relative to the
total number on clicks on product j.
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qij = a0 + bDij + a1rel. priceij + cXij + a2iproducti + εij

As the duration of the price o�ers varies, we standardize consumer clicks as the

number of clicks per week. The vector Dij includes various dummy variables

for price points, like odd or even prices. We use two di�erent de�nitions for

price points:

In the �rst de�nition we use the most frequent price points as dummy variables:

cent prices ending in 99c (e0.99), 90c (e0.90) and 50c (e0.50). For prices with

zero cent we distinguish those with a nine before the comma (e9.00) from those

with other digits (e¬9.00) because the former should be considered as 9-ending

prices.

To convey the �avor of odd and even prices we use a second - more encompass-

ing - de�nition. We set the dummy 9-clustered to 1 if the price is either ending

with 9 neglecting the rightmost zeros (e. g. e576.90, e39.00, e590.00) or has

at least one nine in the last four digits including the cent (e.g. e91.81, e899.11,

e59.92). The dummy evenprice(without9) takes the value 1 whenever a price's

ending is 00 cent without a nine being present in the four rightmost digits (e.

g. e345.00, e100.00). This de�nition for 9-clustered prices is broader and

covers also prices which at �rst sight might not be considered as focal prices;

the advantage of the de�nition is that it is a general one and not ad-hoc.

Finally, to test directly Basu (2006) we arti�cially split up the price into its

euro digits (multiplied by 100) and the remaining cent digits. Fully rational

consumers should pay the same attention to changes in the euro or the cent

digits, provided they have the same amount; the coe�cients for the two vari-

ables should be equal and negative. Basu (2006) on the other hand, argues

that consumers do not consider the cent digits in their demand, its coe�cient

should be zero therefore.

The variable rel. price measures the price of product i of retailer j relative to

the average price of product i over all retailers (hence rel. priceij =
pij∑N

j=1 pij/N
).

Additional control variables in vector X include: rel. shipping cost which

are calculated from the information given at Geizhals.at. Germany is equal

to 1 if the online shop is located in Germany, Austria otherwise. Avail is

equal to 1 if the product is deliverable at short notice. Evaluation − grade
measures the service and reliability evaluation of a shop j by the costumers
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in a scale between 1 and 5 (very good to very bad). #Evaluations counts

the number of customers who have given an evaluation of the retailers' service

characteristics. Pickup is equal to 1 if the retailer has a pick up store. As we

are merging markets for di�erent products, we include product �xed e�ects in

the estimation. We are using price o�ers for a week in June 2007. As prices

may be valid for a varying number of days, we calculate a standardized number

of clicks per day as our dependent variable qij.

Price setting might be endogenous to demand. Therefore, we instrument the

relative price of the product by the mean relative price a �rm has in all markets

except in markets where the products belong to the same subsubcategory as the

product in question11. In the �rst stage regression, the instrument has a strong

and signi�cant impact on prices resulting in a marginal R2 of 0.093. Moreover,

setting a low price in a di�erent market should not in�uence demand in our

market; thus the exclusion restriction will hold. 12 The exclusion restriction is

particularly convincing, because customers in a price-comparison site cannot

look at the complete price list for all products in the other subsubcategories

of one particular �rm. As the organization of the web-site allows only price

comparisons for one particular product across �rms, consumers have a very

hard time to get an image of the overall pricing behavior of one particular

�rm.

Table 2 looks at the in�uence of price points on demand using customer clicks.

columns (1) to (3) of Table 2 use all referral requests as demand indicators,

whereas columns (4) to (6) employ only last-click-throughs (LCTs) which are

considered as better indications for real purchasing decisions. Both indicators

for demand give fairly similar results: as expected, those on last-click-throughs

are numerically considerably smaller.

There is no clear indication that the usage of price points (column 1) boosts

demand. Prices ending with 99 cent are unremarkable. Whereas prices ending

with 90 or 50 cent attract less clicks, those ending with zero cent - in particular

those ending with 9 euro - attract more clicks. Regression results for the last-

click-throughs in column (4) con�rm this picture, albeit on a lower scale. This

11Geizhals.at maps products hierachically into subsubcategories, subcategories and cat-
egories describing the substitutional relationship between the products. As an example,
the category `Video/Photo/TV' contains the subcategory `TV sets' and the subsubcategory
`30-39 inch LCD TV sets '. In total 358 subsubcategories and 40 subcategories are given.

12Kaiser and Song (2009) uses the same instrumentation strategy for the demand for
consumer magazines.
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pattern is generally a�rmed using our de�nitions for odd and even prices in

column (2): we receive somewhat higher demand for 9-clustered price endings,

but no e�ects for even prices not containing nines. The relatively small e�ect

of 9-clustered prices vanishes once we introduce last-click-throughs in column

(5).

Finally, our test for left-to-right processing: Contrary to a fully rational con-

sumer our shoppers behave only boundedly rational. The euro part of the

price has a strong negative e�ect on demand, whereas the e�ect of the cent

is either positive for the number of clicks or zero for LCTs. This is a direct

a�rmation of Basu's (2006) hypothesis of consumers disregarding the cent.

For more expensive products not only cent but also unit digits should be ir-

relevant for the consumer decision. For products with prices above e100 we

repeated this exercise, but shifted one digit to the left: a price of e234.67

results so in a 'signi�cant variable' with a value of 23.000 and an 'insigni�cant

variable' with value 0.467. Again, rational consumers should show the same

coe�cients for both variables. For all clicks we �nd coe�cients of -0.028***

(0.002) for the �rst and 0.376***(0.081) for the second variable, for LCTs we

�nd -0.002*** (0.0002) and 0.034***(0.010). These patterns with the non-

negative signs for the 'insigni�cant variable' strongly con�rm Basu's bounded

rationality hypothesis.

Our further control variables meet our expectations from online markets: The

relative price of the shop decreases demand.13 The positive in�uence of higher

shipping cost on market demand can be seen as evidence for obfuscation

strategies, where online shops compensate their lower prices with higher extra

charges. 14

E-tailers with immediately available o�ers and better and more customer eval-

uations attract more customers. The positive sign of the Germany dummy

points out that the Austrian price search engine is increasingly used by the

German market15.

13This e�ect is not statistically signi�cant in the LCT model, which might be due to the
instrumentation strategy. The corresponding OLS coe�cients for the relative price are both
signi�cant and somewhat higher than the ones presented in Table 2.

14Hossain and Morgan (2006) show that buyers are inattentive to shipping costs in eBay
auctions as well.

15In November 2008 72 percent of the online shops are located in Germany and 62 percent
of the clicks are from German IP-addresses.
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5 Price rigidity and �rm behavior

In this section we analyze the relationship between price endings and the du-

ration of price-quotes. If 99-ending prices are an equilibrium maximizing �rms

have a low inducement to change these price points. On the other hand, if

a price ending is non-focal e-tailers should have an incentive to switch to a

nearby price point to increase demand. Hence, price point theory predicts

that shops maintain o�ers at price points signi�cantly longer than non-focal

prices.

We use duration analysis to compare the survival time of o�ers with price

points to the other o�ers' survival time. At �rst, we look at individual �rm

behavior as it is measured by the time span that elapses until a �rm changes

its own price. We model the hazard of ending an individual spell at duration

t using a semi-parametric Cox model which allows for a fully �exible baseline

hazard hj0(t) and adds other variables proportionally:

h(t|j,Dij, θij, xi) = hj0(t)exp(δDij + βxi + γθij)

j is the �rm index and i is the product-index. The variables of interest are

the indicators for the respective price endings e0.99, e0.90, e0.50, e9.00,

e¬9.00, 9-clustered, and evenprice(without9). Additionally, we add controls

at the o�er-level and the product-level16: θij are four o�er-speci�c controls,

which include shipping cost, availability, clicks and price. xi captures three

product-invariant characteristics such as number of competing shops, activity

in the market in form of the number of price changes and an indicator for

recommendations of the product by consumers.17

5.1 Pooled analysis

We �rst present in Table 3 (column 1-3) results from a pooled analysis where

the baseline hazard hj0(t) is assumed to be equal for all �rms. (i.e.: hj0(t) =

h0(t)∀ j). Standard errors are clustered at the product level. The base regres-

sion in column (1) uses no additional control variables and thus corresponds to

16Since we later stratify with respect to shops there is no need to add shop-speci�c controls.
17Kau�man and Lee (2005) discuss hypotheses about price rigidity in e-tailing relating

to market concentration, product quality and size of the market. Kashyap (1995) gives a
comprehensive overview of price stickiness in retail (catalogs).
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estimating simple Kaplan-Meier survivor functions for the �ve di�erent price

points e0.99, e0.90, e0.50, e9.00, and e¬9.00. All o�ers with price points

have a lower hazard; i.e. they last longer. The e�ect is strongest for the odd

price endings e9.00 followed by e¬9.00 and e0.99. We see the lowest impact

for e0.50. A Coe�cient of -0.762 for e9.00 corresponds to a reduction of

53.32% in the hazard rate. Likewise, a coe�cient of -0.238 for the 50c dummy

translates to a reduction of 21.18%. When a non-focal price ending has a 50%

chance of surviving 54 hours, an o�er that is priced in 50c has a 58%-chance

to make it to the same point in time. A 90c-o�er's odds to survive 54 hours

or more are 72%.

When adding control variables in column (2) we see our results basically un-

changed: both the numerical values as well as the ranking of coe�cients for

our price points are fairly stable. Although there are no strict theoretical pre-

dictions for our control variables the coe�cients �t into a reasonable picture:

More expensive articles and o�ers with higher shipping cost tend to have longer

o�ers. The fact that o�ers for products which are immediately available hold

longer is consistent with an obfuscation strategy: e-tailers which do not have

the product in stock might use short-run bargain o�ers in order to attract

the customers' attention. At a later point in time - when the product can be

delivered immediately - they switch to a higher price. The more clicks an o�er

generates the lower is the incentive to change the price. The same applies for a

low number of average price changes from all other �rms on the market, which

is an indicator for the market's intensity of competition.

Column (3) uses the alternative speci�cation of price points. Again, price

points have signi�cant and substantial longer durations than other prices: here,

the highest e�ect is for even price (without 9), with a somewhat smaller e�ect

for the 9-clustered dummy.

5.2 Strati�ed analysis

It might be that particular shops have speci�c pricing strategies: e.g. one shop

is changing prices routinely each week, another �rm might change them every

day. In order to deal with these di�erences, we use a strati�ed analysis, which

is allowing for a �rm-speci�c baseline hazard rate. Our identi�cation of the

e�ect of price points stems now only from within-�rm variation in the duration
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of price o�ers. As in any �xed-e�ects model we would expect lower coe�cients

in this strati�ed analysis.

In columns (4-6) of Table 3 we report results from the strati�ed estimation,

again including product-speci�c clustered error terms. While, as expected, our

numerical coe�cients are smaller as compared to the pooled analysis, all the

previous patterns are reinforced. Focal prices have a longer average duration

and the e�ect is strongest for prices ending in e9.00 and even price (without

9) prices. Again, the weakest e�ect is found for price quotes ending in 50c.

This strati�ed analysis shows that our price point e�ects cannot be explained

by �rm-speci�c pricing policies: even one and the same shop keeps o�ers with

price points longer than other comparable o�ers.

6 Price rigidity for price leaders

Up to now we looked at the stability of any price o�ers. To investigate market

outcomes or equilibrium outcomes, the equilibrium price should be studied. As

there is still price dispersion in online markets we take the o�er with the lowest

price: the �price-leading� o�er. We thus draw a sub-sample of o�ers, which

held the lowest price at one point in time. The time a price-leading o�er is

valid can be cut in di�erent ways: either another �rm is actively undercutting

this price or the price-leading �rm itself is discontinuing the o�er by going out

of the market or charging a higher price. For an analysis of the competitive

actions in such a market, undercutting by rivals is the decisive feature. Basu

(2006) would argue that an equilibrium at 99-cent prices would not be undercut

by a rival because it is not pro�table to do so.

The new sample consists of 41574 o�ers and 14928 incidents, where a price-

leading o�er was undercut by an opponent. Our analysis uses a competing risk

Cox model strati�ed by �rm level in order to allow for two outcomes: under-

bidding or own price changes. Table 4 shows the results. columns (1-3) show

top-o�ers, which ended by undercutting while columns (4-6) show top o�ers

that were changed by the price-leader itself. We use the same speci�cations

as in Table 3. Our main interest is in the undercutting part. Focal prices are

less likely to be undercut, the strongest e�ect is for prices ending in e9.00

and e0.99 (columns 1 and 2), e�ects for even prices are smaller (e¬9.00) or
insigni�cant (e0.50). When we use our alternative speci�cation (column 3) we
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see a similar pattern: a strong e�ect for odd prices, but no signi�cant e�ect

for even prices (evenprice(without9)). The results for own changes in columns

(4) to (6) are less clear: only prices ending in 90 cent live longer before they

are withdrawn by the �rms.

Controls in Table 4 show basically a consistent picture: The higher the number

of clicks while in lead the higher is the probability that the o�er is undercut

by a competitor. The more active a market is - measured with the number

of price changes of all other �rms - the shorter are the best-price price spells.

In markets with a higher number of competing shops we observe that shops

change their prices more frequently.

7 Interpretation and conclusions

In this paper we present the �rst comprehensive and consistent analysis of

price points on the supply and demand side of a market. We analyze the is-

sue in the context of e-commerce, an environment that is, a priori, not very

favorable to price points. Our results are consistent with Basu (2006) who

assumes boundedly rational shoppers ignoring the rightmost digits due to lim-

ited processing capacity. Pro�t-maximizing �rms will adapt by setting prices

ending in 9s. We �nd that market demand does not react to di�erences in

the cent digits, as Basu (2006) is assuming. Moreover, odd prices show typical

equilibrium characteristics: they are more sticky than regular or even prices.

This is particularly so for best-price o�ers: when these o�ers end with 9, they

are less likely to be undercut by the rivals, they are also less often changed by

the �rm itself.
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8 Tables and Graphs

Figure 1: Distribution of the cent digits on www.geizhals.at
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Figure 2: Distribution of the last euro digits of 00c-ending o�ers on www.geizhals.at
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Table 2: Demand and Focal Pricing

clicks per week last-click-throughs per week

(1) (2) (3) (4) (5) (6)

e0.99 0.097 -0.020
(0.121) (0.016)

e0.90 -0.276*** -0.018*
(0.082) (0.011)

e0.50 -0.614*** -0.050***
(0.094) (0.012)

e9.00 0.510*** 0.065***
(0.119) (0.016)

e¬9.00 0.266*** 0.023***
(0.061) (0.008)

9-clustered 0.087** 0.006
(0.037) (0.005)

even price (without 9) 0.058 0.005
(0.057) (0.008)

euro digits in 100s -0.307*** -0.021***
(0.018) (0.002)

cent digits 0.131** 0.003
(0.052) (0.007)

relative price -1.516*** -1.585*** -0.051 -0.055
(0.425) (0.424) (0.056) (0.056)

rel. shipping cost 0.180*** 0.200*** 0.180*** 0.017** 0.019*** 0.017**
(0.051) (0.050) (0.050) (0.007) (0.007) (0.007)

immmediate 1.683*** 1.664*** 1.691*** 0.152*** 0.150*** 0.151***
availability (0.049) (0.048) (0.047) (0.006) (0.006) (0.006)

reviews -0.105*** -0.113*** -0.104*** -0.011*** -0.012*** -0.012***
grade (0.028) (0.028) (0.028) (0.004) (0.004) (0.004)

reviews 0.003*** 0.003*** 0.003*** 0.000*** 0.000*** 0.000***
number (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

German shop 0.249*** 0.259*** 0.241*** 0.015** 0.017*** 0.015**
(0.049) (0.049) (0.049) (0.006) (0.006) (0.006)

constant 1.696*** 1.706*** 1.364*** 0.069 0.068 0.103***
(0.445) (0.444) (0.120) (0.059) (0.058) (0.016)

Observations 817553 817553 817553 817553 817553 817553
No. Products 23430 23430 23430 23430 23430 23430
Log L -3336965 -1678960
χ2(DF ) 7634 (13) 7542 (10) .(9) 3055 (13) 3009 (10) .(9)

Notes: columns (1), (2), (4) and (5) show IV-Panel-regressions, columns (3) and (6) simple Panel-regressions. Dependent

variable in column (1)-(3): clicks per week , dependant variable in column (4)-(6): last-click-throughs per week. Standard errors

in parentheses: *** p<0.01, ** p<0.05, * p<0.1 No. Obs. = 817,553; No. �rms = 628; No. products = 23,430
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Table 3: Focal Prices and Price Stickiness: All price o�ers

pooled strati�ed

(1) (2) (3) (4) (5) (6)

e0.99 -0.438*** -0.307*** -0.107*** -0.061***
(0.009) (0.009) (0.010) (0.010)

e0.90 -0.408*** -0.371*** -0.098*** -0.087***
(0.007) (0.007) (0.008) (0.008)

e0.50 -0.238*** -0.172*** -0.054*** -0.035***
(0.007) (0.007) (0.008) (0.008)

e9.00 -0.762*** -0.532*** -0.194*** -0.131***
(0.009) (0.010) (0.011) (0.011)

e¬9.00 -0.443*** -0.374*** -0.132*** -0.102***
(0.005) (0.005) (0.007) (0.007)

9-clustered -0.140*** -0.013***
(0.004) (0.003)

even price (without 9) -0.334*** -0.054***
(0.005) (0.006)

price in 100s -0.003*** -0.003*** -0.001*** -0.002***
(0.000) (0.000) (0.000) (0.000)

relative shipping cost -0.085*** -0.066*** -0.006 -0.007
(0.004) (0.004) (0.005) (0.005)

immediate -0.167*** -0.174*** 0.044*** 0.044***
availability (0.005) (0.005) (0.008) (0.008)

clicks -0.030*** -0.034*** -0.021*** -0.021***
(0.002) (0.002) (0.001) (0.001)

number of shops 0.001*** 0.001*** 0.001*** 0.001***
(0.000) (0.000) (0.000) (0.000)

price changes 0.452*** 0.458*** 0.425*** 0.425***
excl. own change (0.004) (0.005) (0.005) (0.005)

recommendations 0.016 0.012 0.026** 0.026**
(0.014) (0.014) (0.012) (0.012)

Observations 803368 803368 803368 803368 803368 803368
Failures 775735 775735 775735 775735 775735 775735
Log L -9670155 -9619230 -9623473 -5917888 -5881645 -5881801
χ2(DF ) 13814 (5) 30824 (14) 22610 (11) 642.0 (5) 10291(14) 9664(11)

Notes: Cox hazard model with cluster-robust standard errors. Dependent Variable: duration. Number of e-tailers

j=703; number of products i=23,498. Number of di�erent o�ers ij= 409,937; number of failures = 775,735. Standard

errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1

23



Table 4: Focal Prices and Price Stickiness: Top-o�ers

risk: undercut own change

(1) (2) (3) (4) (5) (6)

e0.99 -0.219*** -0.235*** 0.000 -0.003
(0.050) (0.051) (0.054) (0.055)

e0.90 -0.114** -0.098** -0.150*** -0.144***
(0.049) (0.049) (0.040) (0.041)

e0.50 -0.085 -0.088 0.005 0.002
(0.063) (0.064) (0.046) (0.047)

e9.00 -0.336*** -0.311*** -0.058 -0.061
(0.055) (0.055) (0.044) (0.044)

e¬9.00 -0.130*** -0.134*** 0.014 0.004
(0.044) (0.045) (0.035) (0.035)

9-clustered -0.089*** -0.032**
(0.025) (0.014)

even price (without 9) -0.070* 0.008
(0.037) (0.027)

price in 100s -0.002 -0.002 0.001** 0.001**
(0.001) (0.001) (0.000) (0.000)

relative shipping cost 0.005 0.004 -0.099*** -0.100***
(0.038) (0.038) (0.020) (0.020)

immediate 0.033 0.027 0.008 0.006
availability (0.041) (0.041) (0.023) (0.023)

clicks while 0.020*** 0.020*** 0.015*** 0.015***
in lead (0.002) (0.002) (0.002) (0.002)

number of shops 0.006*** 0.006*** 0.001*** 0.001***
(0.000) (0.000) (0.000) (0.000)

price changes 2.475*** 2.485*** 3.376*** 3.376***
(excl. own changes) (0.375) (0.376) (0.449) (0.449)

recommendations 0.141** 0.136** -0.013 -0.013
(0.058) (0.058) (0.030) (0.030)

Observations 41574 41574 41574 41574 41574 41574
Failures 14928 14928 14928 26632 26632 26632
Log L -79812 -79206 -79223 -150883 -150690 -150694
χ2(DF ) 50.64 (5) 618.7 (13) 574.1 (10) 17.37 (5) 254.9 (13) 236.3 (10)

Notes: Competing risk Cox hazard model with cluster-robust standard errors, strati�ed at the �rm level. Dependent

variable: duration top. Observations: 41,574; failures in the group of undercut (actively changed) o�ers: 14,928 (26,632;

and 14 o�ers which were valid more than 43 days)); Number of �rms j in estimation = 522; Number of products i=13,471;

Number of di�erent o�ers ij = 21,759. Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1.
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