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Abstract

In this paper, we examine the evolution of the S&P500 returns volatility around

market crashes using a Markov-Switching model. We find that volatility typically

switches into the high volatility state well before a crash and remains in the high

state for a considerable period of time after the crash. These results do not support

the view that crashes are due to the resolution of uncertainty (e.g. Romer, 1993),

but are consistent with the model in Frankel (2008) where the adaptive forecasts of

volatility by uniformed traders result in a crash.
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1 Introduction

Stock prices are subject to sudden and large declines. Although market crashes are

still puzzling, several theories have been developed to explain asset price crashes. Yet,

empirical evaluation and support of these theories is very limited. The purpose of this

paper is to provide an empirical assessment of two specific classes of theories of stock

market crashes. We focus on the model by Frankel (2008) where adaptive forecasts of

volatility play a key role in generating a crash and on the class of theories where crashes

occur due to the resolution of uncertainty (Romer, 1993; Caplin and Leahy, 1994; Lee,

1998; Zeira, 1999; Hong and Stein, 2003). To the latter class of models, we will refer

to as ‘information’ theories. In Frankel (2008) uniformed traders extrapolate increases

in volatility into the future and due to risk aversion, higher volatility results in lower

demand for stocks and ultimately a crash. Informational crashes, in contrast, are the

result of changes in the assessment of the economic environment, which occur in a discrete

way. That is, at some point all remaining uncertainty is resolved instantaneously and

consequently asset prices also adjust in a discrete way.

Note that Frankel (2008) and information theories yield rather distinct predictions

concerning volatility around market crashes. While in Frankel (2008) volatility increases

shortly before a crash, information theories predict that after a crash uncertainty is lower

than before the crash. Hence, to the extent that volatility mirrors uncertainty, we should

observe lower volatility after a crash. In this paper, we exploit these differences in the

implications for the behavior of volatility to empirically evaluate these two alternative

theories.

Previous empirical evidence for theories of stock market crashes is mostly based on

anecdotal evidence.1 In this paper, we provide a first formal empirical comparison of these

two classes of theories of stock market crashes. More specifically, we examine how the

volatility of stock returns evolves before and after crashes, based on a Markov switching

model for the volatility of the return on the S&P 500 index using Bayesian methods.

This framework allows us to identify volatility states, and also to explore the transition

1For instance Frankel (2008) argues that the empirical observations that frenzies occur with much

lower frequency than crashes is at odds with the predictions of information-based models of crashes.
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between states.

Our analysis shows that volatility typically increases well before a crash. Although this

result is essentially consistent with both theories, we also find that volatility remains in

the high state for a substantial amount of time after crashes occur, which is at odds with

the idea that crashes are due to the resolution of uncertainty as advocated in information

based theories. If a crash was indeed due to the revelation of information, then one would

expect volatility to decline quickly after a crash. However, in Frankel (2008) crashes are

associated with higher volatility. Thus, we conclude that the evidence presented in this

paper favors the Frankel (2008) model over information models.

The remainder of the paper is structured as follows: Section 2 reviews the theories

that we evaluate empirically. Section 3 briefly discusses the data and our empirical model,

while Section 4 presents our results. Section 5 summarizes and concludes the paper.

2 Adaptive Volatility Forecasts, Information and Stock

Market Crashes

In this section we discuss the theoretical motivation for our analysis. We discuss, on

the one hand, the Frankel (2008) model where forecasts of volatility play a key role in

generating crashes and, on the other hand, information-based theories of crashes.

In Frankel (2008) a crash is the outcome of the interaction between informed and

uninformed traders. Informed traders observe a signal which leads them to lower their

demand for stocks. Consequently the price of the stock falls. Uninformed investors believe

that the volatility of stock prices is serially correlated and therefore they extrapolate the

observed increase in volatility into the future. Moreover, uniformed traders are risk averse

and therefore the higher expected volatility induces them to lower their demand for the

stock. This reduction in demand generates a crash. Essentially, the mechanism at work in

this model resembles a feedback strategy as in De Long et al. (1990), with the difference

that in Frankel (2008) uniformed traders extrapolate volatility and not the price itself.

Note that in Frankel (2008) volatility increases slightly before a crash. Although

Frankel (2008) is silent about the level of volatility after the crash, it appears plausible that

3



volatility may remain higher than before the crash for some time. Otherwise, uniformed

traders would lower their expectation of volatility and the crash would soon be followed

by a boom. In any case, a crash is associated with an increase in volatility.

In information-based theories of stock market crashes, the sudden revelation of in-

formation causes a crash. Romer (1993) argues that asset prices may only gradually

incorporate information if, for instance, the quality of the information is uncertain. In

this model, investors, observe signals about the true payoff of an asset and these signals

are either reliable or not. Over time, as trade occurs, investors learn about the quality of

the signal, and at some point they are able to fully deduce the quality of the signal. This

change in their perception of the distribution of quality occurs discretely and therefore

the asset price also changes in a discrete way. Note that in this model, the crash can

occur without any recent releases of news and thus, without an obvious reason, since the

crash is the result of information aggregation and not new information.

In Caplin and Leahy (1994), the dissemination of private information is constrained

since investors do not properly respond to news until some threshold is triggered. When

the threshold is reached, behavior changes and the actions of investors reveal a substantial

amount of information which may give rise to a large drop in the price as other agents

also react to the newly available information.

Lee (1998) argues that transaction costs prevent trades and therefore information is

not revealed. Again, a small trigger may cause the accumulated private information to

be revealed, resulting in high volatility, even without an accompanying event.

In Zeira (1999) asset prices increase due to a favorable change in the economic en-

vironment. However, investors do not know for how long this change will last and they

have to use the available information to form a distribution on when the situation ends.

In the meantime, dividends increase and so does the stock price. At some point, investors

learn that the period of favorable conditions is over and they adjust their expectations

of future dividends. Essentially, the distribution over potential end dates for the period

of high dividend growth immediately collapses to a point distribution and therefore the

stock price crashes.2

2Abreu and Brunnermeier (2003) present a model where traders know that a crash will occur even-

tually, but not when. In this sense, their model is similar to Zeira (1999). However, in Abreu and
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Hong and Stein (2003) present a model where information is not incorporated into

prices due to short-sale constraints. So the mechanism that generates a crash in the model

in Hong and Stein (2003) shares some similarities with Caplin and Leahy (1994). Due

to short-sale constraints, bearish investors do not participate in the market and therefore

their information is not reflected in prices. When prices decline, rational arbitrageurs are

able to deduce the information of bearish investors, as they may still abstain from buying.

Thus, hidden information is suddenly revealed resulting in a crash.

To summarize, the information-based theories surveyed here, suggest that uncertainty

is lower after the crash. In fact, the crash is the result of the resolution of uncertainty.

To the extent that volatility gives an indication of the degree of uncertainty, we should

therefore observe that a stock market crash is followed by a period of low volatility. In

Frankel (2008) crashes are associated with an increase in volatility. Thus, the Frankel

(2008) model and the information-based theories yield rather different predictions con-

cerning the evolution of volatility before and especially after crashes. In our empirical

analysis, we exploit these differences to distinguish between these two classes of theories.

3 Data and Empirical Methodology

In this section we describe the data and our empirical methodology. The purpose of

our analysis is to explore volatility states around the dates of crashes and to empirically

evaluate the theories of crashes summarized in Section 2.

More specifically, we identify the volatility states by estimating a three-state Markov-

switching model for the variance of the daily returns on the S&P500 index. The data used

in this paper consist of daily observations of the S&P500 index (closing prices) ranging

from January 4, 1928 till March 13, 2009 which give us a total of 20,400 observations.

The data are obtained from Bloomberg’s online database.

Let yt be the return on the S&P500 (calculated as the first natural logarithmic differ-

Brunnermeier (2003), traders face an optimal timing problem. They want to ride a bubble as long as

it generates returns. A crash finally occurs when sufficiently many traders sell. However, the crash can

happen even when uninformative news act as a coordination device. Thus, in Abreu and Brunnermeier

(2003) a crash is not necessarily associated with the resolution of uncertainty.
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ences):

yt ∼ N(0, σ2
t ), (1)

We assume that the variance σ2
t follows a Markov-switching process. More specifically,

at any point in time, the variance σ2
t is one out of three unobservable states, Skt, where

k = 1, 2, 3. That is, either in the low state S1t, the medium, S2t of the high state S3t:

Skt = 1 if St = k and Skt = 0, otherwise. (2)

The variance of yt, is:

σ2
t = σ2

1S1t + σ2
2S2t + σ2

3S3t, (3)

where

σ2
1 < σ2

2 < σ2
3. (4)

The unobserved states, St, evolve according to a first-order Markov process with transition

probabilities

pij = Pr[St = j|St−1 = i] =, i, j = 1, 2, 3, where
3∑

j=1

pij = 1. (5)

To estimate this model, we follow Kim et al. (1998) and Kim and Nelson (1999) and apply

a Bayesian framework. Using the Gibbs-sampler we iteratively generate simulated samples

from a set of the state variables, S̃T = [S1, S2, ... ST ]′, the variances, σ̃2 = [σ2
1, σ2

2, σ2
3],

and the transition probabilities, p̃ = [p11, p12, p21, p22, p31, p32, p33]
′ by drawing from

their joint distributions. To derive the joint posterior density, p
(
S̃T , σ̃2 , p̃ | ỹT

)
, where

ỹT = [y1, y2, ... yT ]′, we assume that the transition probabilities, p̃, conditional on S̃T , are

independent of σ̃2 and the data, ỹT . This conditioning assumption, allows us to rewrite

the joint density as

p
(
S̃T , σ̃2 , p̃ | ỹT

)
= p

(
σ̃2 , p̃ | ỹT , S̃T

)
p

(
S̃T | ỹT

)
= p

(
σ̃2 | ỹT , S̃T

)
p

(
p̃ | ỹT , S̃T

)
p

(
S̃T | ỹT

)
= p

(
σ̃2 | ỹT , S̃T

)
p

(
p̃ | S̃T

)
p

(
S̃T | ỹT

)
. (6)

Based on (6) we iteratively simulate drawings from the joint distribution of all the state

variables and the model’s parameters, given the data in three, sequential steps: First,
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we generate the path of the state variable, S̃T , conditional on all the model’s unknown

parameters, σ̃2 and p̃, and the data, ỹT . Second, we generate the transition probabilities,

p̃, conditional on the path of the state variable. And finally, in a third step, we generate

the path of the variances, σ̃2, conditional on S̃T and the data, ỹT .3 Gibbs-sampling is run

such that the first 1000 draws are discarded and the next 10000 draws are recorded. We

apply almost uninformative priors for all parameters in the model.4

In addition to a simulated set of the state variables, variances, and transition probabil-

ities, we also obtain the so-called ‘smoothed probabilities’, Pr[St = k|St+1, ỹt], k = 1, 2, 3,

associated with the three states. These smoothed probabilities are the estimated proba-

bilities of the volatility states based on all historical information. Since we will examine

the behavior of stock market volatility around crashes, these smoothed probabilities are

of particular interest for our analysis.

Table 1 presents the marginal posterior distributions of the parameters. These esti-

mated parameters imply that, on average, the low-, medium- and high-volatility state last

106, 56 and 33 days, respectively.

To investigate the validity of the three-state Markov-switching model, we perform an

ARCH LM test on the average of 10000 sets of the standardized S&P500 returns,5 to check

for remaining heteroscedasticity. The ARCH LM statistic, which tests the null hypothesis

of no ARCH effects versus the alternative that the standardized returns follow an ARCH

process, is distributed as a χ2 with q degrees of freedom under the null hypothesis (where

q is the number of lags the series is regressed on). We obtain LM statistics of 0.354,

1.237, 2.865 and 3.111 at lags 1 through 4. The associated p-values are 0.24, 0.19, 0.14

and 0.11 respectively. Thus, we cannot reject the null of no ARCH effects in the stan-

dardized returns, which suggests that the three-state Markov-switching model provides

an appropriate description of the dynamics in the S&P500 return variance.

3For a detailed description of the this procedure see Chapter 9 in Kim and Nelson (1999).
4The authors thank Chang-Jin Kim and Charles R. Nelson for providing their code.
5We standardize returns as y∗t = yt/σt, where y∗t denotes the standardized return.
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4 Stock Market Crashes and Volatility States

What we are ultimately interested in, is the behavior of volatility around days charac-

terized by large declines in stock prices. As discussed in Section 2, the Frankel (2008)

model suggests that the crashes are accompanied by an increase in volatility. In contrast,

information-based theories predict that crashes are the result of the revelation of infor-

mation. Therefore, one would expect volatility to decline shortly after a crash. Thus,

inspecting the volatility dynamics should allow us to evaluate these types of theories

empirically.

We focus on the 20 largest declines in stock prices which occurred in the period from

January 1, 1928 to March 13, 2009. Table 2 shows the dates as well as the decline of the

S&P500 index associated with these crashes. We see from the table that almost all of

these declines are of an order magnitude of eight to nine percent. The main exception

is October 19, 1987 when the S&P500 declined by approximately 20 percent.6 Note also

that shortly after the crash on October 19, 1987 we observe another large, albeit less

exceptional, decline of 8.28 percent on October 26, 1987.

How does volatility behave around days when stocks decline sharply? Figures 1 to

10 show the smoothed probabilities associated with the three volatility states around the

dates of the crashes in our sample. More specifically, the graphs show the smoothed

probabilities for periods starting four months prior to a crash and ending four months

after a crash. Since some of the crashes occurred within relatively short periods of time,

we combine some of the crashes in the same figure.

Figure 1 shows how the probabilities associated with the three states evolve over time

around the first three crashes in our sample, which occurred on October 28, 1929, October

29, 1929 and November 6, 1929. We observe a high probability of being in the medium

volatility state until about a month prior to the crash on October 28, 1929. Then, we

observe a transition to the high volatility state, where the probability of being in the high

state increases quickly and substantially. After the crashes at the end of October and

beginning of November, the high volatility state persists until January, 1930.

In short, we observe a switch into the high volatility state quite some time before

6See Schwert (1990) for a detailed discussion of the 1987 crash and stock price volatility.
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the crash, which persists for a substantial period of time after the crash. Note that this

pattern does not support information theories as the high volatility state which persists

after a crash is hard to interpret as being associated with the resolution of uncertainty.

According to Frankel (2008), a crash should be associated with an increase in volatility.

Although we see from Figure 1 that volatility started to increase quite some time before

the crash, it switched into the high state relatively shortly before the crash. Thus, this

pattern is in line with the prediction of the Frankel (2008) model. Overall, the behavior

of volatility around the first three crashes in our sample are more in line with adaptive

volatility forecasts as the source of the crash than with the resolution of uncertainty.

Qualitatively, the smoothed probabilities of being in one of the three states evolve

similarly around the fourth crash on June 16, 1930 as shown in Figure 2, and also around

the four crashes between October 5, 1931 and October 10, 1932 displayed in Figure 3. We

observe again, that volatility starts to increase some time before the crash and remains

in the high regime for a considerable period of time after the crashes.

Figure 4 shows a slightly different pattern before the crashes on June 20, 1933 and

June 21, 1933. We see that volatility was in the high state for a considerable period of

time, switched into the medium state briefly before the first of these two crashes occurred

and switched back into the high state essentially on the day of the crash. Nevertheless,

here we also observe that volatility basically remained in the high state after the June 21,

1933.

We see from Figure 5 that in the four months prior to the crash on July 26, 1934,

volatility frequently switched between the medium and high states. The last switch into

the high state occurred relatively shortly before the crash. After the crash, in September

1934, volatility returned to the medium state. We find again that the crash was associated

with higher volatility. Similarly, Figure 6 shows that volatility increased about two months

prior to the crash and remained in the high regime after the crash.

Figures 7 and 8 shows again similar patterns around the crashes on May 14, 1940, and

September 3, 1946. Volatility switched into the high regime shortly before the respective

day the crash occurred. Before the crash on May 14, 1940, volatility switched from the

low state into the high state, whereas the increase in volatility was more gradual before
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the crash on September 3, 1946. Nevertheless, volatility remained in the high and medium

states after the crash.

For the largest crash in our sample, October 19, 1987, Figure 9 shows that volatility

increased substantially before the crash. The smoothed probability of being in the low

state declined steadily from July 1987 onwards, whereas the smoothed probability of being

in the medium volatility state increased. Shortly before the crash, volatility increased

again, as we observe an increase in the smoothed probability of being in the high state.

Shortly after the October 19 crash, another large decline occurred on October 26, 1987

and volatility remained in the high regime well beyond the second crash in October 1987.

In January 1988, volatility declined, but remained in the medium state.

The remaining four crashes in our sample occurred between September 29, 2008 and

December 1, 2008. Figure 10 shows that volatility switched in the medium state well

before September 29, and switched into the high state at the end of August. After

December 1, volatility remained in the high state.

In short, we find that volatility behaves rather similarly around the market crashes

in our sample. Volatility increases before crashes and remains relatively high after the

crash occurred. In terms of the two classes of theories we evaluate in this paper, our

finding that volatility is typically in the high state at the time of a crash is consistent

with information-based theories as well as with the adaptive expectations mechanism in

Frankel (2008). However, we also find that in almost all cases, volatility remains relatively

high for a substantial period of time after crashes occur. Put differently, we find almost

no evidence for the hypothesis that a crash accompanies the resolution of uncertainty

as suggested by the information view. Nevertheless, the result that volatility increases

before a crash and declines only slowly after a crash is essentially in line with Frankel

(2008). However, we also find that in many instances, volatility switched into the high

state without triggering a crash. This finding is hard to square with the Frankel (2008)

model, where the uniformed agents should adapt their expectations also in those instances.

Overall, we conclude that although neither of the theories is fully supported by our results,

the Frankel (2008) model is more in line with our findings than the information view.

The 20 largest crashes we discussed so far occurred either at the beginning of our sam-
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ple, that is mostly in the 1930s, or at the end of the sample, after 1987. Although during

the period 1946 to 1986, the S&P500 also declined sharply on several occasions, these

declines were simply smaller than the ones associated with the crashes at the beginning

and at the end of our sample. Therefore, as an additional analysis, we now analyze the

five largest daily declines occurred from January 1, 1946 to December 31, 1986. Table 3

shows the dates and the percentage declines of the five largest crashes during this sub-

sample. As we can see, these five declines in the S&P500 are all of an order of magnitude

of five to seven percent and therefore smaller than the crashes described in Table 2.

Figures 11 to 15 show the smoothed probabilities associated with the volatility states

around these additional crashes. These figures largely confirm our previous conclusions.

Volatility increases before a crash and remains higher then before the crash for an extended

period of time. The only exception is the crash on September 11, 1986, when volatility

switched from the medium into the high state essentially on the day of the crash, then

switched back into the medium state quickly after the crash and then, finally, into the

low state. Thus, apart from the crash itself and a brief aftermath, volatility was actually

lower after the crash than before. This pattern is consistent with the idea that the crash

was associated with a resolution of uncertainty. In this sense, this crash in rather unique

in our sample.

To summarize our results, Table 4 shows the number of days before and after the

individual crashes for which the variance was in the high state. When we focus on the

20 largest crashes in our sample the upper panel of the table shows that the variance

switched into the high state on average 22 days before the crash and remained in the high

regime for around 68 days on average after the crash. Looking at the smaller crashes in

the lower panel of the table, we see a similar pattern. Here, volatility essentially increases

on the day of the crash and remains high for around six days. Thus, although we observe

some heterogeneity, especially when taking the smaller crashes during the subsample 1948

- 1986 into account, it appears that crashes are associated with an increase in volatility.

Yet, the increase typically occurs already substantially before the crash.

11



5 Concluding Remarks

Why do stock market crashes occur? That is, why do stock prices decline substantially and

unexpectedly during a single day? In this paper we explore this question by empirically

comparing two particular theories of stock market crashes.

We find that although crashes are somewhat idiosyncratic, volatility typically increases

before or on the day a crash occurs and remains in the high state for a considerable period

of time. This result is at odds with the information view of stock market crashes, where

a crash is the result of the resolution of uncertainty. However, the result is broadly

consistent with the view suggested in Frankel (2008), where uninformed traders make

adaptive forecasts of volatility and the interaction between uninformed and informed

traders eventually leads to a crash.

In addition to providing an evaluation of the two classes of theories, our result that

stock market crashes are typically associated with a rather persistent increase in volatil-

ity also has implications for potential macroeconomic effects of market crashes. Several

papers argue that the adverse macroeconomic implications of stock market crashes are

strongly related to uncertainty. According to Romer (1990) it was primarily the higher

uncertainty associated with the stock market crash in 1929 which resulted in the decline

in consumption spending and aggregate demand and which ultimately led to the Great

Depression. Bloom (2009) also stresses that jumps in uncertainty have implications for

the business cycle, as firms may reduce their activity levels after increases in uncertainty

(see also Bloom et al., 2007; Bloom, 2007). Since we find that market crashes are indeed

associated with lasting increases in volatility, these adverse, macroeconomic consequences

of stock market volatility may indeed be pronounced after strong declines in stock prices.
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Table 1: Bayesian Gibbs-sampling approach to a three-state Markov-switching model of
heteroscedasticity for S&P500 returns, (January 4, 1928 - March 13, 2009)

Parameter Posterior
Mean SD MD 98 percent posterior bands

p11 0.9877 0.0015 0.9878 (0.9837, 0.9910)
p12 0.0118 0.0015 0.0117 (0.0084, 0.0159)
p21 0.0144 0.0019 0.0143 (0.1038, 0.0192)
p22 0.9772 0.0023 0.9772 (0.9715, 0.9822)
p31 0.0009 0.0009 0.0006 (0.0000, 0.0039)
p32 0.0370 0.0057 0.0367 (0.0253, 0.0517)
p33 0.9621 0.0058 0.9624 (0.9473, 0.9741)
σ2

1 0.0000 0.0000 0.0000 (0.0000, 0.0000)
σ2

2 0.0001 0.0000 0.0001 (0.0001, 0.0001)
σ2

3 0.0008 0.0000 0.0008 (0.0008, 0.0009)
Notes: SD and MD denotes Standard deviation and median, respectively.

Table 2: Fifteen Largest Daily Percent Declines in the S&P500 Index, 1928 - 2009

Number Date Daily Decline in Percent
1 October 28, 1929 12.94
2 October 29, 1929 10.16
3 November 6, 1929 9.92
4 June 16, 1930 7.64
5 October 5, 1931 9.07
6 August 12, 1932 8.02
7 October 5, 1932 8.20
8 October 10, 1932 8.55
9 July 20, 1933 8.88
10 July 21, 1933 8.70
11 July 26, 1934 7.83
12 October 18, 1937 9.12
13 May 14, 1940 7.47
14 September 3, 1946 9.91
15 October 19, 1987 20.47
16 October 26, 1987 8.28
17 September 29, 2008 8.79
18 October 9, 2008 7.62
19 October 15, 2008 9.03
20 December 1, 2008 8.93

Notes: The declines are ordered by date.
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Table 3: Five Largest Daily Percent Declines in the S&P500 Index, 1948 - 1986

Number Date Daily Decline in Percent
1 November 03, 1948 4.61
2 June 26, 1950 5.38
3 September 26, 1955 6.62
4 May 28, 1962 6.68
5 September 11, 1986 4.81

Notes: The declines are ordered by date.

Table 4: Volatility in the High State Before and After Crashes

days in the high state
before the crash after the crash

1928 - 2009
Oct 28 until Nov 6, 1929 18 31
June 16, 1930 6 41
October 5, 1931 until October 10, 1932 21 62
July 20 and 21, 1933 109 169
July 26, 1934 5 13
October 18, 1937 32 196
May 14, 1940 2 22
September 3, 1946 4 17
October 19 until 26, 1987 4 53
Sept 29, until Dec , 2008 18 74

average 21.9 67.8

1948 - 1986
November 3, 1948 1 4
June 26, 1950 0 4
September 26, 1955 0 5
May 28, 1962 3 14
September 11, 1986 0 1

average 0.8 5.6
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